还剩2页未读,继续阅读
文本内容:
第一章特殊的平行四边形课题
1.1矩形的性质与判定(第一课时)★学习目标★.掌握矩形的定义,理解矩形与平行四边形的关系..理解并掌握矩形的性质定理;会用矩形的性质定理进行推导证明.(重点).会初步运用矩形的定义、性质来解决有关问题,进一步培养学生的分析能力.(难点)★学习过程★【自主学习】阅读教材P11〜13完成以下问题
(一)知识探究.有的平行四边形叫做矩形..矩形是的平行四边形,具有平行四边形的性质..矩形的都是直角..矩形的对角线..矩形的对称性既是对称图形;又是对称图形,有条对称轴.直角三角形斜边上的中线等于斜边的.
(二)自学反响.请用所学的知识诊断下面的语句,假设正确请在括号里打〃,错误的改正过来⑴矩形是特殊的平行四边形,特殊之处就是有一个角是直角.()⑵平行四边形是矩形.()⑶平行四边形具有的性质(如平行四边形的对边平行且相等;平行四边形的对角相等;平行四边形的对角线互相平分)矩形也具有.().ZXABC是直角三角形,NABC=90,BD是斜边AC上的中线.假设BD=3cm那么AC=cm.【新知探究1】【新知归纳1】矩形的定义有一个内角是的平行四边形叫矩形【合作交流1】矩形是特殊的平行四边形它具有一般平行四边形的所有性质,你能列举一些这样的性质吗.矩形的两组对边..矩形的两组对角..矩形的对角线.【新知探究2】I、用矩形纸片折一折,答复以下问题1矩形是轴对称图形吗?如果是,它有几条对称轴?2图中有哪些相等的角?⑶矩形的对角线有什么关系?【合作交流2】如上图,四边形ABCD是矩形,NABO90,对角线AC与BD相交于点
0.求证lNABC=NBCD二NCDA二NDAB=90°;2AC=BD.【新知归纳2】矩形与平行四边形的性质比照【新知探究3】探究3BE与BD有怎样的关系?BE与AC有怎样的关系?3由上述关系你能得到什么结论?【新知归纳3】定理直角三角形斜边上的中线等于斜边的一半.【合作交流3】你能写出“直角三角形斜边上的中线等于斜边的一半〃的逆命题吗?※典型范例※例
1.如图,矩形ABCD的两条对角线相交于点0NA0D=120,AB=
2.5cm求矩形对角线的长.【稳固练习】L矩形两条对角线夹角为60,较短一边长,较长一边长为那么此矩形对角线长为第1题第4题第5题第7题.矩形具有一般平行四边形不具有的性质是()A.对边相互平行B.对角线相等C.对角线相互平分D.对角相等.如果矩形的两条对角线所成的钝角是120,那么对角线与矩形短边的长度之比为()A.32B.21C.
1.51D.
114.如图,在矩形ABCD中,ABBCACBD相交于点0那么图中等腰三角形的个数是()A.8B.6C.4D.
25.如图,在RlZkABC中,NACB=90,D、E为AB、AC的中点.那么以下结论中错误的选项是()A.CD=ADB.ZB=ZBCDC.ZAED=90°D.AC=2DE.在直角三角形中,两条直角边的长分别为12和5那么斜边上的中线长为..矩形的一条对角线长10cm且两条对角线的一个夹角为60,那么矩形的宽为cm..矩形ABCDAB=3AD=40勿过对角线BD的中点0作BD的垂直平分线EF分别交ADBC于点EF那么AE的长为cm..矩形0ABC在平面直角坐标系中的位置如下列图,点B的坐标为
(34)D是0A的中点,点E在AB上,当4CDE的周长最小时,那么点E的坐标为第8题第9题第10题能力提升
1.如图,在正方形/腼中,对角线/C与必相交于点£为程上一点,密/为庞的中点.假设AW的周长为18那么伊的长为.【能力提升题】.如图,矩形ABCQ中,为AC中点,过点O的直线分别与A
3、CD交于点E、/,连结所交AC于点M连结DE、60假设NCOB=60,=,那么以下结论;
①FB垂直平分OC;
②AEOB二ACMB
③DE=EF;@c.c其中正确结论的个数是.A.4个B.3个C.2个D.l个.如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C上.假设AB=6BC=9那么BF的长为〔A.4B.3a/2C.
4.5D.5提升2提升3提升
4.如图,ZiABC中,DE分别是ABAC的中点F是DE上一点,且AF,FC假设BC=9DF=1那么AC的长为..如图在aABC中,NBAC=90°D、E、F、分别是BC、AB、AC边的中点求证AD=EF【课堂小结】
1、矩形的定义有一个内角是直角的平行四边形叫做矩形
2、矩形的特性1矩形的四个角都是直角;2矩形的对角线相等
3、定理直角三角形斜边上的中线等于斜边的一半.。
个人认证
优秀文档
获得点赞 0