还剩4页未读,继续阅读
文本内容:
探索二次函数的图象与性质在本次演示中,我们将深入了解二次函数及其图象我们将探究它的定义、标准式、图象、性质及其应用引言二次函数的定义二次函数的一般式二次函数是指的函数二次函数的一般式为y=ax²+bx+ca≠0y=ax²+bx+ca≠0二次函数的标准式二次函数的参数二次函数的标准式为,其中二次函数的参数为、、其中决定了开口方向y=ax-h²+ka≠0a bc a为顶点坐标和形状,和决定了位置h,k bc二次函数的图象二次函数的图二次函数的图对称轴与顶点顶点坐标推导象特点象分类公式对称轴的方程为x=-顶点的坐标为图象为平滑的开口向上b/2a的顶点坐••a0:y=ax-h²+k弧线,称为抛的抛物线-b/2a,c-b²/4a标为h,k物线对称轴是垂直开口向下••a0:于轴的直线,的抛物线x过顶点二次函数的性质函数单调性1的符号决定了抛物线的开口方向,从而决a定了函数的单调性函数零点2函数的零点是指函数与轴的交点求零点x的方法有因式分解法、求根公式法和配方法函数的极值3开口向下时,函数有极大值;开口向上时,函数的最值函数有极小值4函数的最值是函数的极大值和极小值中的最大值或最小值练习题练习题一练习题二12已知二次函数的顶点坐标为求出函数二次函数的零点为1,-2y=ax²-2ax+5a x1=1,x2=3的解析式求的值a练习题三练习题四34已知二次函数的解析式为求出已知二次函数的解析式为求y=2x+1²-3y=2x²-16x+29该二次函数的开口方向、对称轴方程和顶点坐标该二次函数的极值、最值和零点总结二次函数的基本概念回顾二次函数的图象与性质总结二次函数的应用二次函数的定义、一般式、标准式、二次函数的图象、单调性、零点、二次函数常用于描述自然界和社会参数、图象特点、分类、对称轴方极值、最值等此外,我们还介绍现象中的许多规律性现象比如,程、顶点坐标推导公式等了求二次函数的解析式的方法抛物线、受阻运动、范围最大、最小等问题。
个人认证
优秀文档
获得点赞 0