还剩2页未读,继续阅读
文本内容:
二次根式的除法教学建议知识结构重点难点分析是商的二次根式的性质及利用性质进行二次根式的化简与运算,利用分母有理化化简商的算术平方根的性质是本节的主线,学生掌握性质在二次根使得化简和运算的运用是关键,从化简与运算由引出初中重要的内容之一分母有理化,分母有理化.的理解决定了最简二次根式化简的掌握教学难点是二次根式的除法与商的算术平方根的关系及应用二次根式的除法与乘.法既有联系又有区别,强调根式除法结果的一般形式,避免分母上含有根号由于.分母有理化难度和复杂性大,要让学生首先理解分母有理化的意义及计算结果形式.教法建议.本节内容是在有积的二次根式性质的基础后学习,因此可以采取学生自主探索学习的模式,通过前一节的复习,让学生通过具体实例再结合积的性质,对比、归纳
1.得到商的二次根式的性质教师在此过程中给与适当的指导,提出问题让学生有一定的探索方向.本节内容可以分为三课时,第一课时讨论商的算术平方根的性质,并运用这一性.质化简较简单的二次根式(被开方数的分母可以开得尽方的二次根式);第二课时
2.讨论二次根式的除法法则,并运用这一法则进行简单的二次根式的除法运算以及二次根式的乘除混合运算,这一课时运算结果不包括根号出现内出现分式或分数的情况;第三课时讨论分母有理化的概念及方法,并进行二次根式的乘除法运算,把运算结果分母有理化这样安排使内容由浅入深,各部分相互联系,因此及彼,层层展开.引导学生思考想一想中的内容,培养学生思维的深刻性,教师组织学生思考、.讨论过程中,鼓励学生大胆猜想,积极探索,运用类比、归纳和从特殊到一般的思
3.“”考方法激发学生创造性的思维教学设计示例.
一、教学目标掌握商的算术平方根的性质,能利用性质进行二次根式的化简与运算;会进行简单的二次根式的除法运算
1.使学生掌握分母有理化概念,并能利用分母有理化解决二次根式的化简及近似计
2.;算问题;
3.培养学生利用二次根式的除法公式进行化简与计算的能力;通过二次根式公式的引入过程,渗透从特殊到一般的归纳方法,提高学生的归纳
4.总结能力;
5.通过分母有理化的教学,渗透数学的简洁性
二、教学重点和难点
6..重点会利用商的算术平方根的性质进行二次根式的化简,会进行简单的二次根式的除法运算,还要使学生掌握二次根式的除法采用分母有理化的方法进行
1.难点二次根式的除法与商的算术平方根的关系及应用.
三、教学方法
2..从特殊到一般总结归纳的方法以及类比的方法,在学习了二次根式乘法的基础上本小节内容可引导学生自学,进行总结对比
四、教学手段.利用投影仪
五、教学过程.
(一)引入新课学生回忆及得算数平方根和性质(,)是用什么样的方法引出的(上述积的算术平方根的性质是由具体例子引出的)a≥0b≥0学生观察下面的例子,并计算.由学生总结上面两个式的关系得类似地,每个同学再举一个例子,然后由这些特殊的例子,得出
(二)新课商的算术平方根一般地,有(,>).商的算术平方根等于被除式的算术平方根除以除式的算术平方根a≥0b0让学生讨论这个式子成立的条件是什么,>,对于为什么>,要使学.生通过讨论明确,因为=时分母为,没有意义a≥0b0b0b
00.引导学生从运算顺序看,等号左边是将非负数除以正数求商,再开方求商的算术平方根,等号右边是先分别求被除数、除数的算术平方根,然后再求两个算术a b平方根的商,根据商的算术平方根的性质可以进行简单的二次根式的化简与运算例化简.();();();1解()123()∶1()2说明如果被开方数是带分数,在运算时,一般先化成假分数;本节根号下的字母3均为正数例化简.();();2解()12()1让学生观察例题中分母的特点,然后提出,的问题怎样解决2再总结这一小节开始讲的二次根式的化简,只限于所得结果的式子中分母可以完全开的尽方的情况,的问题,我们将在今后的学习中解决学生讨论本节课所学内容,并进行小结.
(三)小结.商的算术平方根的性质(注意公式成立的条件)会利用商的算术平方根的性质进行简单的二次根式的化简
1..
(四)练习
2..化简();();()
1.化简
123.();();()
2.
六、作业123教材习题;组p.
18311.3a
1.
七、板书设计二次根式的除法。
个人认证
优秀文档
获得点赞 0