还剩24页未读,继续阅读
本资源只提供10页预览,全部文档请下载后查看!喜欢就下载吧,查找使用更方便
文本内容:
高等数学课件D88多元函数的极值与最值,汇报人01添加目录标题02多元函数的极值与最值概念目录03多元函数的极值与最值应用CONTENTS04多元函数的极值与最值求解方法多元函数的极值与最值在数学中的地位05和作用多元函数的极值与最值在现实生活中的06应用案例分析单击添加章节标题第一章多元函数的极值与最值概念第二章定义与性质多元函数极值在多元函数中,当函数在某一点处的偏导数等于零时,该点称为函数的极值点多元函数最值在多元函数中,当函数在某一点处的偏导数等于零且该点处的函数值大于或等于其他所有点处的函数值时,该点称为函数的最值点极值与最值的关系极值点不一定是最值点,但最值点一定是极值点极值与最值的求解方法通常采用导数法求解多元函数的极值与最值极值与最值的判定条件极值函数在某点处的导数为0,且该点两侧的导数符号相反最值函数在某点处的导数为0,且该点两侧的导数符号相同极值与最值的关系极值不一定是最值,最值不一定是极值极值与最值的求解方法利用导数求解,如利用一阶导数求解极值,利用二阶导数求解最值极值与最值的计算方法极值多元函数在某点处的偏导数为零,且该点处的海森矩阵正定最值多元函数在某点处的偏导数为零,且该点处的海森矩阵负定极值与最值的求解方法使用拉格朗日乘数法、梯度下降法等极值与最值的应用在工程、经济、管理等领域广泛应用多元函数的极值与最值应用第三章在实际问题中的应用经济领域用于分析市场价格、供需关系等工程领域用于优化设计、提高效率等科学研究用于分析实验数据、建立模型等生活领域用于解决实际问题,如最优路线、最优资源分配等在数学建模中的应用物理问题求解多元函数的经济问题求解多元函数的极值与最值,以解释物理现极值与最值,以进行经济决象策优化问题求解多元函数的工程问题求解多元函数的极值与最值,以找到最优解极值与最值,以优化工程设计在其他领域的应用经济学用于分析市场价物理学用于分析力学、工程学用于优化设计、计算机科学用于优化算格、供需关系等电磁学等物理现象提高效率等法、提高计算效率等多元函数的极值与最值求解方法第四章梯度法梯度法是一种梯度法通过计梯度法需要计梯度法适用于求解多元函数算多元函数的算多元函数的连续可微的多极值与最值的梯度,找到梯偏导数,然后元函数,对于方法度为零的点,求解偏导数为不可微的多元这些点可能是零的方程组函数,需要使极值点用其他方法求解极值与最值拉格朗日乘数法拉格朗日乘数基本思想通适用条件多步骤首先确法是一种求解过引入拉格朗元函数在约束定约束条件,多元函数极值日乘数,将多条件下的极值然后引入拉格与最值的方法元函数转化为与最值求解朗日乘数,最单变量函数,后求解拉格朗然后求解日函数,得到极值与最值牛顿法l牛顿法是一种求解多元函数极值与最值的方法l牛顿法通过迭代求解,每次迭代都使用上一次的解作为下一次的初始值l牛顿法需要计算函数的导数,并使用导数来更新解l牛顿法在求解多元函数极值与最值时,通常比直接求解更快、更准确拟牛顿法基本思想通过迭代求解非线性方程组,寻找多元函数的极值与最值优点收敛速度快,稳定性好,适用于大规模优化问题步骤选择初始点,计算梯度和Hessian矩阵,更新迭代点,重复以上步骤直到满足停止条件应用在工程、经济、管理等领域广泛应用,如最优化、参数估计、机器学习等多元函数的极值与最值在数学中的地位和作用第五章在数学学科中的地位多元函数的极值与在微积分、线性代多元函数的极值与多元函数的极值与最值是数学中的重数、概率论等数学最值是解决实际问最值是数学学科中学科中,多元函数题的重要工具,如的重要研究领域,要概念,广泛应用的极值与最值是基优化问题、最优化具有广泛的应用前于各个领域础理论之一问题等景和研究价值在数学学科中的作用多元函数的极值与在微积分、概率论、多元函数的极值与多元函数的极值与最值是数学分析中最值是数学学科中统计学等数学学科最值在优化问题、的重要概念,对于重要的研究领域,中,多元函数的极决策问题、控制问理解函数的性质和对于推动数学学科值与最值是解决实题等实际应用中具变化规律具有重要的发展具有重要意际问题的重要工具有广泛的应用价值意义义对数学发展的影响和贡献多元函数的极值与最值是数学中的重要概念,对于理解多元函数、微积分等数学领域具有重要意义多元函数的极值与最值在解决实际问题中具有广泛的应用,如优化问题、工程问题等多元函数的极值与最值是数学发展的重要成果,对于推动数学理论的发展具有重要作用多元函数的极值与最值在数学教育中也具有重要意义,可以帮助学生更好地理解数学概念和理论多元函数的极值与最值在现实生活中的应用案例分析第六章经济学中的最优化问题生产决策如何分配资源以实现最大利润消费决策如何分配收入以实现最大效用投资决策如何分配资金以实现最大回报定价决策如何设定价格以实现最大销售额物理学中的极值问题l力学中的极值问题例如,在力学中,物体的运动轨迹可以通过极值问题求解,如抛体运动、圆周运动等l电磁学中的极值问题例如,在电磁学中,电磁场的分布可以通过极值问题求解,如电场强度、磁场强度等l热力学中的极值问题例如,在热力学中,热力学系统的状态可以通过极值问题求解,如温度、压力等l光学中的极值问题例如,在光学中,光的传播路径可以通过极值问题求解,如折射、反射等工程学中的最优化问题结构优化在工程设计中,通过优生产调度在生产过程中,通过优化设计参数,使结构达到最优性能化生产调度,使生产效率达到最优添加标题添加标题添加标题添加标题材料选择在工程设计中,通过优成本控制在工程设计中,通过优化材料选择,使产品达到最优性能化成本控制,使产品成本达到最优人工智能中的优化算法遗传算法模拟生物进化过程,寻找最优解模拟退火算法模拟金属冷却过程,寻找全局最优解粒子群优化算法模拟鸟群觅食行为,寻找最优解神经网络优化算法模拟人脑神经网络,寻找最优解强化学习优化算法模拟智能体与环境交互,寻找最优解深度学习优化算法模拟人脑神经网络,寻找最优解感谢您的观看汇报人。
个人认证
优秀文档
获得点赞 0