还剩19页未读,继续阅读
本资源只提供10页预览,全部文档请下载后查看!喜欢就下载吧,查找使用更方便
文本内容:
高中数学人教A版必修2课件
4.
1.1圆的标准方程PPT,a clickto unlimitedpossibilities汇报人PPT01添加目录标题02圆的标准方程的推导过程目录03圆的标准方程的解析CONTENTS04圆的标准方程的应用05圆的标准方程的拓展应用单击添加章节标题第一章圆的标准方程的推导过程第二章圆的标准方程的推导思路●定义圆心和半径*圆心是给定点到圆上任意一点的连线段的中点*半径是圆心到圆上任意一点的距离●*圆心是给定点到圆上任意一点的连线段的中点●*半径是圆心到圆上任意一点的距离●确定圆的标准方程*圆心在原点时,圆的标准方程为x²+y²=r²*圆心不在原点时,圆的标准方程为x-h²+y-k²=r²,其中h,k为圆心的坐标●*圆心在原点时,圆的标准方程为x²+y²=r²●*圆心不在原点时,圆的标准方程为x-h²+y-k²=r²,其中h,k为圆心的坐标●推导过程*通过定义圆心和半径,我们可以确定圆的方程*通过代入点x,y到圆的方程中,我们可以得到圆的方程*通过化简方程,我们可以得到标准形式的圆的方程●*通过定义圆心和半径,我们可以确定圆的方程●*通过代入点x,y到圆的方程中,我们可以得到圆的方程●*通过化简方程,我们可以得到标准形式的圆的方程●注意事项*在推导过程中,要注意代入点的坐标是否满足圆的方程*在化简方程时,要注意保持方程的正确性和完整性●*在推导过程中,要注意代入点的坐标是否满足圆的方程●*在化简方程时,要注意保持方程的正确性和完整性圆的标准方程的推导过程●定义圆的标准方程是描述圆的标准形式,通常表示为x-a^2+y-b^2=r^2,其中a,b是圆心坐标,r是半径●推导过程首先,我们可以通过圆上任意一点Px,y到圆心Oa,b的距离等于半径r来推导圆的标准方程根据距离公式,OP=sqrt[x-a^2+y-b^2],当OP=r时,点P在圆上●展开平方将OP^2=x-a^2+y-b^2展开,得到x^2-2ax+a^2+y^2-2by+b^2=r^2●化简方程进一步化简,得到x^2-2ax+y^2-2by=r^2-a^2-b^2●整理方程整理后,得到x-a^2+y-b^2=r^2,这就是圆的标准方程以上是关于“圆的标准方程的推导过程”的介绍内容●以上是关于“圆的标准方程的推导过程”的介绍内容圆的标准方程的解析第三章圆的标准方程的形式圆的标准方程的定义圆的标准方程的解析圆的标准方程的应用圆的标准方程的推导过程圆的标准方程中各参数的意义a、b、r圆心坐标和半径x、y圆心坐标r半径长度x-a^2+y-b^2=r^2圆的标准方程圆的标准方程的应用第四章利用圆的标准方程求圆的半径和圆心坐标圆的标准方程$x-a^2+y-b^2=r^2$,其中a,b为圆心,r为半径已知圆上一点Px0,y0,利用圆的标准方程求半径r和圆心坐标a,b代入点P的坐标到圆的标准方程中,得到$x0-a^2+y0-b^2=r^2$通过解方程组,可以得到圆心坐标a,b和半径r利用圆的标准方程判断点与圆的位置关系●圆的标准方程$x-a^2+y-b^2=r^2$,其中$a,b$为圆心,$r$为半径●点与圆的位置关系*点在圆内点到圆心的距离小于半径;*点在圆上点到圆心的距离等于半径;*点在圆外点到圆心的距离大于半径●*点在圆内点到圆心的距离小于半径;●*点在圆上点到圆心的距离等于半径;●*点在圆外点到圆心的距离大于半径●利用圆的标准方程判断点与圆的位置关系*将点的坐标代入圆的标准方程,计算点到圆心的距离;*比较距离与半径大小,判断点与圆的位置关系●*将点的坐标代入圆的标准方程,计算点到圆心的距离;●*比较距离与半径大小,判断点与圆的位置关系●举例说明*例如,点$3,4$与圆$x-1^2+y-2^2=5^2$的位置关系;*将点坐标代入圆的标准方程,计算得到$3-1^2+4-2^2=45$;*判断点在圆内●*例如,点$3,4$与圆$x-1^2+y-2^2=5^2$的位置关系;●*将点坐标代入圆的标准方程,计算得到$3-1^2+4-2^2=45$;●*判断点在圆内利用圆的标准方程判断直线与圆的位置关系圆的标准方程一般形式为x²+y²+Dx+Ey+F=0,其中圆心为-D/2,-E/2,半径为r=D/2+E/2-F/2直线与圆的位置关系相交、相切、相离利用圆的标准方程判断直线与圆的位置关系将直线的方程代入圆的方程,通过比较判别式的大小来判断直线与圆的位置关系实际应用在几何、物理、工程等领域中,可以利用圆的标准方程判断直线与圆的位置关系,从而解决实际问题圆的标准方程的拓展应用第五章利用圆的标准方程求两圆的位置关系已知两圆的标准方程,可以求出两圆当两圆相切时,可以求出切点坐标和的圆心和半径切线方程利用圆心和半径的关系,可以判断两当两圆相离时,可以求出两圆心之间圆的位置关系的距离当两圆相交时,可以求出交点坐标利用圆的标准方程求圆的切线方程圆的标准方程$x-a^2+y-b^2=r^2$,其中$a,b$为圆心,$r$为半径切线的定义与圆只有一个公共点的直线切线的方程$y-b=kx-a$,其中$k$为切线的斜率利用圆的标准方程求切线方程的方法将圆的方程代入切线的方程,解出$k$即可得到切线方程感谢您的观看汇报人PPT。
个人认证
优秀文档
获得点赞 0