还剩2页未读,继续阅读
文本内容:
5.
2.1平行线教学案学习目标
1.理解平行线的意义,了解同一平面内两条直线的两种位置关系;
2.理解并驾驭平行公理及其推论的内容;
3.会依据几何语句画图,会用直尺和三角板画平行线;
4.了解在实践中总结出来的基本事实的作用和意义,并初步感受公理化思想学习重点探究和驾驭平行公理及其推论.学习难点:对平行线本质属性的理解,用几何语言描述图形的性质学具准备分别将木条a、b与木条c钉在一起,做成学具,直尺,三角板学习过程
一、学前准备
1、两条直线相交有个交点
2、平面内两条直线的位置关系除相交外,还有哪些呢?C
二、探究与思索•
(一)平行线,
1、视察思索展示学具,在转动a的过程中,有没有直线-----------aa与直线b不相交的位置呢?
2、定义及表示方法在同一平面内,是平行线直线a与b平行,记作
3、对平行线概念的理解定义中强调“在同一平面内”,为什么要强调这句话在同一平面内,两条直线有几种位置关系?在空间中,是否存在既不平行又不相交的两条直线?(提示用长方体来说明)
4、总结同一平面内两条直线的位置关系有两种
(1)
(2)o请你举出一些生活中平行线的例子
(二)画平行线
1、工具直尺、三角板\
2、练习画平行线一V一-a已知:直线a,点B,点C.一\
(1)过点B画直线a的平行线,能画几条?5V一一b⑵过点C画直线a的平行线,它与过点B的平行线平行吗?
(三)平行公理及推论
1、思索上图中,
①过点B画直线a的平行线,能画条;
②过点C画直线a的平行线,能画条;
③你画的直线有什么位置关系?
2、平行公理
①公理内容:o
②比较平行公理和垂线的第一条性质共同点:都是“有且只有一条直线”,这表明与已知直线平行或垂直的直线存在并且是唯一的.不同点:平行公理中所过的“一点”要在已知直线外,两垂线性质中对“一点”没有限制,可在直线上,也可在直线外.
3、推论_________________________________________________
①符号语言Vb//a,c〃a(已知)--------c・•・b〃c(假如两条直线都与第三条直线平行,------------b那么这两条直线也相互平行)
②探究如图,P是直线AB外一点,CD与EF相交于P.若CD与AB平行,则EF与AB平行吗为什么?EP
三、练一练教材13页练习(在书上完成)
四、学习体会A
1、本节课你有哪些收获?你还有哪些怀疑?
2、预习时的疑难解决了吗?
五、自我检测
(一)选择题
1.下列命题
(1)长方形的对边所在的直线平行;
(2)经过一点可作一条直线与已知直线平行;
(3)在同一平面内,假如两条直线不平行,那么这两条直线相交;
(4)经过一点可作一条直线与已知直线垂直.其中正确的个数是()A.1B.2C.3D.
42、下列推理正确的是()A、因为a//d,b//c,所以c//d B、因为a//c,b//d,所以c//dC、因为a//b,a//c,所以b//c D、因为a//b,d//c,所以a//c
3.在同一平面内有三条直线,若其中有两条且只有两条直线平行,则它们交点的个数为()A.O个B.1个C.2个D.3个
4.下列说法正确的有()
①不相交的两条直线是平行线;
②在同一平面内,两条直线的位置关系有两种;
③若线段AB与CD没有交点,则AB〃CD;
④若a//b,b〃c,则a与c不相交.A.1个B.2个C.3个D.4个
(二)填空题
1.在同一平面内,两条直线的位置关系有.
2.在同一平面内,一条直线和两条平行线中的一条直线相交,那么这条直线与平行线中的另一条必.
3.同一平面内,两条相交直线不行能与第三条直线都平行,这是因为.
4.两条直线相交,交点的个数是,两条直线平行,交点的个数是个.
5、在同一平面内,与已知直线1平行的直线有条,而经过1外一点,与已知直线1平行的直线有且只有条
6、在同一平面内,直线11与k满足下列条件,写出其对应的位置关系
(1)11与b没有公共点,则11与L;
(2)L与k有且只有一个公共点,则L与L;
(3)L与L有两个公共点,则L与bo
7、在同一平面内,一个角的两边与另一个角的两边分别平行,那么这两个角的大小关系是
8、平面内有a、b、c三条直线,则它们的交点个数可能是个
9、如图所示,・.・AB〃CD(已知),经过点F可画EF〃AB EF//CD()
六、拓展延长
1.依据下列要求画图.⑴如图⑴所示,过点A画MN〃BC;C2如图2所示,过点P画PE〃OA,交0B于点E,过点P画PH〃OB,交0A于点H;⑶如图⑶所示,过点C画CE〃DA,与AB交于点E,过点C画CF//DB,与AB延长线交于点F.4如图⑷所示,过点M,N分别画直线AB的平行线,推断所画的两条直线的位置关系.
2、如图,长方体ABCD-EFGH,1图中与棱AB平行的棱有哪些?2图中与棱AD平行的棱有哪些?3连接AC、EG,问AC、EG是否平行
3、如图所示再〃b,a与c相交,那么b与c相交吗为什么b。
个人认证
优秀文档
获得点赞 0