还剩5页未读,继续阅读
文本内容:
南通大学毕业设计开题报告周霖专业学生姓名电气工程及其自动化班级电学号192题口基于水下声呐信息的失事残骸识别系统研究国内文献开题日期年月日22202333阅读文献国外文献篇开题地点教911406情况尺2
一、文献综述与调研报告(阐述课题研究的现状及发展趋势,本课题研究的意义和价值、参考文献)本课题研究的现状及发展趋势海洋扫测声呐主要包括侧扫声呐、多波束声呐、合成孔径声呐三类[]本文主要利用1侧扫声呐进行研究侧扫声呐技术是探索海底的主要技术手段之一,我国对此技术起步较晚,早期都是从发达国家进口设备来使用,而我国开始研究侧扫声呐系统,并在年成19701972功研究出第一款侧扫声呐系统,并被应用到了海军的武器中,增强了我国军事硬实力李勇航⑵等人讲述了截止到年侧扫声呐技术的现状及发展,由于海洋环境复杂,时2015刻有大量噪声,对侧扫声呐探测系统带来了噪声污染,解决噪声干扰问题是提升侧扫声呐成像图像质量的关键问题之一何勇光[]介绍了当今声呐发展迅速,美国公司使用了数3Klein字动态聚焦科技以及波束控制技术可以获得更高分辨率的图像信息侧扫声呐应用广泛,李海滨等人[]介绍了侧扫声呐应用于海洋局部生态系统监测、海水养殖及濒危动物监测、海4底热液喷口及冷泉探测、水下搜救等侧扫声呐技术的发展为更多的应用场景提供了方便,但同时也对侧扫声呐图像精度及对图像处理要求更高李海滨等人⑷也验证了侧扫声呐图像在海底目标和定位的应用上的可行性而海上环境复杂,噪声污染等无可避免,在声呐图像处理中,武鹤龙等人⑸提出来一种侧扫声呐非下采样轮廓波变换域分区增强办法,结果不仅可以较好消除噪声,而且可以提升弱边缘使声呐图像效果增强而王磊等人⑹提出来一种利用小波和滤波的组合降噪方法,进一步降低了NLM回波信号中的非高斯分布的乘性噪声,获得了更好的声呐图像,这种方法主要应用于侧扫声呐回波信号处理王磊,金绍华等人⑺提出了一种基于剪切波变化的侧扫声呐图像降噪方法,有效地抑制了噪声,获得了更好的图像效果刘晨晨⑻针对侧扫声呐图像受海底混响干扰严重的缺点,不仅提出了一种将高阶谱双谱的谱峰值作为图像中目标是否存在的判断方法,使其更具普遍性,还提出了一种形态学边缘算法、基于图像边缘变换的声呐图像不变性Radon特征提取办法王雷[]对声呐数据进行了解码,提出了航向角优化模型和航向角校正算法;9对滤波算法进行了研究,并提出了一种改进的图像滤波算法,为后续图像分割工作打BEMD好了良好基础;通过对分割算法的研究,提出了一种基于分层的侧扫声呐图像快速分割MRF算法,提高了传统分割算法的分股速度和分割精度李胜全等人[]首次将负反馈分析理10论引入到海底图像处理论述了声呐图像快速增强处理方法,并首次提出侧扫声呐图像镶嵌必须考虑增益因素王雷等人[]利用和改进模糊均值聚类算法,提出了新11BEMD GMRFC的聚类准则和距离函数,形成了一种新的模糊聚类算法,提高了抗噪性和准确性罗明愿[]12从聚类分析的角度提取了声呐图像的感兴趣区域,分别用灰度信息和区域绝对粗糙度,灰度信息和分形维数灰度信息和局部区域表面积等,采取均值聚类等算法取得了良好结果李阳[]研究了多种图像预处理和模糊聚类算法,并在两种不同类型的神经网络分类器进行了13侧扫声呐图像海底底质的分类刘小菊等人[]利用侧扫声呐在南海某珊瑚礁发现了沉船14并对该区域的侧扫声呐图像进行定量反演和重建董凌宇等人[]构建了基于分形纹理特15征的级联分类器沉船目标识别流程,有效提供了目标识别精度与识别效率汤寓麟Adaboost等人[]提出了一种基于迁移学习的卷积神经网络侧扫声呐沉船图像识别方法,从理论上16证明了该方法可以有效应用于海上搜救中武银等人[]提出了一种联合迁移学习和深度17学习的沉船侧扫声呐图像识别方法,成功证明了迁移学习算法有利于提高小样本情况下识别的正确率郑毅等人[]分析了侧扫声呐图像纹理特征,对该特征在沉船识别中的应用提18供了理论基础在深度学习被广泛应用以来,李书东[]提出了一种经过改进的深度学习侧扫声呐图像19沉船目标检测办法,并在对侧扫声呐条带图像沉船目标检测中取得了良好结果余泽芳[]20在模型的基础上提出来一种多维度特征融合的提高了准确度和置YOLOv3Improved YOLOv3,信率,训练出了准确度更高的模型张博宇等人[]利用卷积神经网络,通过大量的数据训21练,对众多结构的神经网络进行了对侧扫声呐沉船图像识别实验,得出了是六种DenSeNetl21神经网络(、、系列、系列)中最适合水下LeNet-5AlexNet VGGGoogleNet ResNetDenseNet沉船图像识别的网络结构韩春花等人[]在充分理解侧扫声呐原理及其数据分析处理方法22后,开发了一款侧扫声呐数据处理软件,实现了对侧扫声呐原始数据自动解析、参数提取统计、质量检测等功能未来随着目标识别技术的进一步发展,这样软件能不断更新迭代,以满足更多应用场景需要等[]将空间金字塔与在线数据集处理和进行融合,提出了一Li23YOLOv3种基于方法的改进神经网络实验结果表明其不仅提高了检测精度,还提升了检测速YOLOv3度等[]提出了一种新型神经网络架构主要在编码器和解码器之间获得更多Zhao24DeNet,的上下文并仍保持较高精度,其不仅可以配备在的上,而且在海洋勘探中也有潜在应SSS auv用价值等[]实现了侧扫声呐瀑布图像中沉船目标的自动准确识别,构建了Zhu25AdaBoost模型,提高了对样本图像的正确识别率等[]对侧扫声呐图像进行定性和定量的可Lubis26视化和解释,分析海底声波后向散射,并利用小波对声呐信号进行处理等[]提出了在软件环境中确定声呐图像数据并可以利用全球参考系Kumudham27MATLAB统进行映射位置等[]将网络与优化器相结合,并证实该模型在Kim28DarkNet-19ADAM识别韩国海岸外圆柱体物体有最佳性能,但由于数据集偏少,且物体的高光信号和阴影特征会因为海底背景的不同而不同,所以该研究结果还是偏向于特定条件等[]不仅提出了Ge29一种基于卷积神经网络的侧扫声呐图像生成方法,利用较低成本有效解决了声学难题,模拟的侧扫声呐图像与真实侧扫声呐图像高度相似,还提出了一种基于迁移学习与合成数据的侧扫声呐图像分类方法他们使用预先训练好的网络模型不仅有效解决了小数据样本会引发的CNN过拟合问题,而且大大提高了分类精度同时,他们也证实了对于数据样本分布不均的数据集,可以通过添加“模拟侧扫声呐图像”提高分类精度,并且迁移学习仍可以正确对目标进行分类等[]针对声呐图像边界信息弱、噪声干扰打、特征提取难度大的问题,提出了双重Huang30分割注意力轻量级网络,将空间注意力与通道注意力有效地融合在一起其提出DSA SOLO的网络利用与两个注意力单元来确定“哪里”和“什么”值得关注,提高了网络对噪C.S S-C声的抵抗力但其模块引入参数较大,影响了分割速度等[]提出了一种用于图DSA Li31像分类和目标检测的迁移学习法,通过将噪声添加到白化特征中,并使用没有任何信息的噪声作为深度特征来缩小源域和目标域直接的域差距,从而提高了迁移学习的性能,同时也提高了迁移学习在特殊小样本图像分类任务领域的实际应用价值本课题研究的意义和价值水下失事残骸目标探测与识别是水下应急搜救的重要内容世界上很多发达国家对水下目标识别技术投入了大量的人力、物力,并取得了显著的成果侧扫声呐作为水下地貌图像的获取设备,具有价格低廉、分辨率高等优点,在海洋工程、海洋科学、海上搜救、水下目标探测和识别等领域得到了广泛的应用目前,对侧扫声呐图像的识别一般采用人工判读的方式,但人工判读存在效率低、耗时长、资源消耗大及主观不确定性强和过分依赖经验等问题深度学习快速便捷,其在光学图像中的广泛应用与优势,使得其在声呐图像目标识别中也具有广泛应用前景,但相关研究仍是较少,其部分原因在于,声呐图像不易获得,成本高,尤其失事残骸侧扫声呐图像少,相比较与光学图像数据量过少对于这类小样本问题,仍需要进行相关研究所以本课题选用水下失事残骸作为研究对象,结合深度学习网络模型,并根据侧扫声呐图像特点,研究基于水下声信息的模式识别方法参考文献[]耿家营.海洋扫测声呐技术综述[]中阿科技论坛中英文1J.,2022,No.4309128-
132.[]李勇航,牟泽霖,万范.海洋侧扫声呐探测技术的现状及发展[]通讯世2J.界,201503;213-
214.[]何勇光.海洋侧扫声呐探测技术的现状及发展[].工程建设与设计3J,202004:275-
276.[]李海滨,滕惠忠,宋海英,段东方,黄毅.基于侧扫声呐图像海底目标物提取方法[].4J海洋测绘,2010,3006:71-
73.[]武鹤龙,邱政,张维全.侧扫声呐图像非下采样轮廓波变换域分区增强方法[.兵工学5J报,2021,4207:1463-
1470.[]王磊,金绍华,崔杨,边刚,魏源,联合小波和滤波的侧扫声呐回波信号降噪[]6NLM J.海洋测绘,2021,4103:69-
73.[]王磊,金绍华,崔杨等.剪切波变换下的侧扫声呐图像降噪方法[].舰船科学技7J术,2022,4403:129-
134.⑻刘晨晨.高分辨率成像声呐图像识别技术研究[].哈尔滨工程大学D,
2006.[]王雷.侧扫声呐图像分割算法研究[],哈尔滨工程大学9D,
2013.[]李胜全,滕惠忠,凌勇,刘雁春,严晓明,侧扫声呐图像实时增强技术[]应用声10J.学,200605:284-
289.[]王雷,叶秀芬,王天.模糊聚类的侧扫声呐图像分割算法[].华中科技大学学报自11J然科学版,2012,4009:25-
29.[]罗明愿.侧扫声呐图像感兴趣区域提取算法研究[].哈尔滨工程大学12D,
2011.[]李阳,水下目标探测中的侧扫声呐图像处理技术研究[]哈尔滨工程大学13D.,206[]刘小菊,施祺,杨红强凋胜男.基于侧扫声呐影像的南海珊瑚礁沉船及周边地形重建14[],热带地理J,2020,4002:278-
288.[]董凌宇,单瑞,刘慧敏,于得水,杜凯.基于分形纹理特征的侧扫声呐图像沉船识别15方法研究[]海洋地质与第四纪地质J,2021,4104:232-
239.]汤寓麟,金绍华,边刚,张永厚,李凡.侧扫声呐识别沉船影像的迁移学习卷积神经网|16络法[].测绘学报J,2021,5002:260-
269.[]武锦,王晓,张丹阳凋海波,陈家儒.联合迁移学习和深度学习的侧扫声呐沉船识别方17法[]河南科技J,2021,4036:36-
40.[]郑毅.侧扫声呐图像纹理特征在分析沉船识别中的应用[]中国水18J.is,202281:200-
204.[]李书东.基于深度学习的侧扫声呐条带图像沉船探测方法研究[].江苏海洋大19D学,
2022.[]余泽芳.多维度特征融合的侧扫声呐图像目标检测设计与实现[],西北大学20D,
2022.[]张博宇,王晓,杨敬华等,卷积神经网络识别侧扫声呐影像的研究[],海洋科学进21J展,2022,4001:102-
109.[]韩春花,张俊明,梁建峰,戴秀杰,一款侧扫声呐数据处理软件的研发与应用[],22J北京测绘,201205:44-47+
43.
[23]Li,Jinrui,et al.Improved Neural Network withSpatial PyramidPooling andOnline DatasetsPreprocessingfor UnderwaterTarget DetectionBased onSide ScanSonar Imagery.M RemoteSensing
15.22023:
440.
[24]Zhao X,Qin R,Zhang Q,et al.DeNet:Dilated convolutionalneural networksfor sidescansonar image semanticsegmentation[J].Journal ofOcean Universityof China,2021,205:1089-
1096.
[25]Zhu,Bangyan,et al.Active learningfor recognitionof shipwrecktarget inside-scan sonarimage/Remote Sensing
11.32019:
243.
[26]Lubis,M.Z.,et al.Discrete EquiSpacedUnshaded LineArray methodfor targetidentificationusing sidescan sonarimagery.IOP ConferenceSeries:Earth andEnvironmentalScience.Vol.
176.No.
1.IOP Publishing,
2018.
[27]Kumudham,R.,and V.Rajendran.nSide scan sonarimagedata mappingwith geographicreferencesystem.*Special IssueAdv EngSci
7.
2.212018:410-
413.
[28]Kim WK,Bae HS,Son SU,et al.NeuralNetwork-Based UnderwaterObject Detectionoffthe Coastof theKorean Peninsula[J].Journal ofMarine Scienceand Engineering,2022,1010:
1436.
[29]Ge,Qiang,et al.Side-scansonarimage classificationbased onstyle transferand pretrainedconvolutionalneural networks.1Electronics
10.152021:
1823.
[30]Huang H,Zuo Z,Sun B,et al.DSA-SOLO:Double SplitAttention SOLOfor Side-ScanSonar TargetSegmentation[J].Applied Sciences,2022,1218:
9365.
[31]Li C,Ye X,Xi J,et al.A TextureFeature RemovalNetwork forSonar ImageClassificationand Detection[J].Remote Sensing,2023,153:
616.
二、本课题的基本内容,预计解决的难题基本内容采集数据集,进行目标分类;
1.搭建水下目标识别模型;
2.训练基于或其他深度学习网络模型的声呐图像信息检测模型;
3.YOLO应用到模拟的场所中来实验,对系统的性能进行评价;
4.预计解决的难题侧扫声呐图像成像理论研究与原始数据的分析;
1..侧扫声呐图像的预处理、目标识别与定位;2构建声呐图像检测数据集,尽可能地包括各类失事残骸情况;
3.训练不同声呐图像,提高识别精度;
4..侧扫声呐图像采集及处理上位机平台的搭建;5
三、课题的研究方法、技术路线研究方法.查阅相关的论文、专利与产品,比较现有方法的优缺点确定本次毕业设计的算法流程;
1.利用语言作为开发工具,在系统下编写程序,开发基于的水2Python WindowsYOLO下声呐信息的失事残骸识别模型;.测试系统的性能(识别率与实时性能),针对问题进行系统的升级与优化;3技术路线采集数据集;
1.设计声呐图像识别算法的流程;
2.确定流程图中每个子模块的功能与方法;
3.训练基于的声呐图像检测模型;
4.YOLO对模型进行测试
5.
四、研究工作条件和基础:研究工作条件硬件条件
1.利用电气工程学院届挑战杯《智能水下检修机器人》项目为依托平台,具有丰2021富的前期调查经验及工作积累,也具有计算机与常用电子研发工具等便利条件,检测相应的声呐图像;软件条件
2.利用或者语言作为开发语言进行软件编程;Matlab Python研究基础基于深度学习的行为识别算法;
1.网络结构;
2.YOLO卷积神经网络;
3.CNN语言进行软件编程;
4.Python理论基础《模式识别》各种分类器的概念与训练方法
1.
五、进度计划起讫日期工作内容指导教师下达任务书.《数字图像处理》运动目标检测、图像分割、特征的提取图像的读取与表示2完成开题报告,开题答辩中期检查,包括设计图纸或软硬件等根据任务书的内容,完成毕业论文或设计根据任务书的要求,阅读国内外文献,准备开题报告根据任务书的成果形式,检查学生完成工作任务的情况,组织毕业设计(论文)的成果验收提交毕业设计或论文,指导教师、评阅教师评阅,查重完成答辩资格审查结束阶段()毕业答辩准备、答辩等1()成果装订、成绩汇总、总结2论文实验完成日文献调研完成论文阶段完成日期甘口I~1-H*l1撰写论文完成评议答辩完成日~~4+n4+n同意开题指导教师评语导师签名—年月日202331通过教研室,总、教研室(系)主任签名—年月日202331见通过开题(<)学院思开题不通过()见教学院长签名—年月日202331。
个人认证
优秀文档
获得点赞 0