还剩20页未读,继续阅读
本资源只提供10页预览,全部文档请下载后查看!喜欢就下载吧,查找使用更方便
文本内容:
医学统计学课后习题答案第一章医学统计中的基本概念练习题
一、单向选择题医学统计学研究的对象是
1.医学中的小概率事件各种类型的数据A.B.动物和人的本质疾病的预防与治疗C.D.有变异的医学事件E.用样本推论总体,具有代表性的样本指
2.的是在总体中随意抽取任意个体B.D.总体中最容易获得的部分个体用配对方法抽取的部分个体A.挑选总体中的有代表性的部分个体C.依照随机原则抽取总体中的部分个体E.下列观测结果属于等级资料的是
3.脉搏数收缩压测量值B.A.病情程度.住院天数D.C四种血型E.随机误差指的是
4.由操作失误引起的误差B.测量不准引起的误差A.选择总体不当引起的误差D.选择样本不当引起的误差C.由偶然因素引起的误差E.收集资料不可避免的误差是
5.系统误差B.随机误差A.记录误差D.过失误差C.仪器故障误差E.答案:EEDE A
二、简答题常见的类误差是什么?应采取什么措施和方法加以控制?2[参考答案]常见的三类误差是系统误差在收集资料过程中,由于仪器初始状态未调整到零、标准试剂未经1校正、医生掌握疗效标准偏高或偏低等原因,可造成观察结果倾向性的偏大或偏小,这叫系统误差要尽量查明其原因,必须克服随机测量误差在收集原始资料过程中,即使仪器初始状态及标准试剂已经校2正,但是,由于各种偶然因素的影响也会造成同一对象多次测定的结果不完全一致譬如,实验操作员操作技术不稳定,不同实验操作员之间的操作差异,电压不稳及环境温度差异等因素造成测量结果的误差对于这种误差应采取相应的措施加以控制,至少应控制在一定的允许范围内一般可以用技术培训、指定固定实验操作员、加强责任感教育及购置一定精度的稳压器、恒温装置等措施,从而达到控制的目的抽样误差即使在消除了系统误差,并把随机测量误差控制在允许范围内,样3本均数或其它统计量与总体均数或其它参数之间仍可能有差异这种差异是由抽样引起的,故这种误差叫做抽样误差,要用统计方法进行正确分析抽样中要求每一个样本应该具有哪三性?均数的标准误可以用来衡量样本均数的抽样误差大小,即S=30mg/dl,〃=100=
3.0样本含量为属于大样本,可采用正态近似的方法计算可信区间100,X=
207.5,S=30,〃=100,$亍=3,则95%可信区间为X+u.S-=
207.5+
1.96x3=
213.38a12上限:mg/dl下限又一啧项=
207.5-L96x3=20L62(mg/用)故该地名儿童的胆固醇平均水平的可信区间为10095%
201.6211^/5~
213.38mg/dlo
③因为名曾患心脏病且胆固醇高的子代儿童的胆固醇平均水平的可信区间1095%的下限高于正常儿童的总胆固醇平均水平提示患心脏病且胆固醇高的父175mg/dL辈,其子代胆固醇水平较高,即高胆固醇具有一定的家庭聚集性(李康)第五章检验t练习题
一、单项选择题两样本均数比较,检验结果尸>说明
1.05两总体均数的差别较小两总体均数的差别较大A.B.支持两总体无差别的结论不支持两总体有差别的结论C.D.可以确认两总体无差别E.由两样本均数的差别推断两总体均数的差别,其差别有统计学意义是指
2.两样本均数的差别具有实际意义A.两总体均数的差别具有实际意义B.两样本和两总体均数的差别都具有实际意义C.有理由认为两样本均数有差别D.有理由认为两总体均数有差别E.两样本均数比较,差别具有统计学意义时,值越小说明
3.P两样本均数差别越大两总体均数差别越大A.B.越有理由认为两样本均数不同越有理由认为两总体均数不同C.D.越有理由认为两样本均数相同E.减少假设检验的类误差,应该使用的方法是
4.n减少类错误减少测量的系统误差A.I B.减少测量的随机误差提高检验界值C.D.增加样本含量E.两样本均数比较的检验和检验的主要差别是
5.t u检验只能用于小样本资料检验要求大样本资料A.t B.u检验要求数据方差相同检验的检验效能更高C.t D.t检验能用于两大样本均数比较E.u答案DEDEB
二、计算与分析已知正常成年男子血红蛋白均值为今随机调查某厂成年男子人,测其
1.140g/L,60血红蛋白均值为标准差问该厂成年男子血红蛋白均值与一般成年125g/L,15g/L男子是否不同?[参考答案]因样本含量故采用样本均数与总体均数比较的检验n50n=60,u建立检验假设,确定检验水平1该厂成年男子血红蛋白均值与一般成年男子相同乩从,该厂成年男子血红蛋白均值与一般成年男子不同a=
0.05计算检验统计量2_X-JLI140-125%j/y/n_15V60=775确定值,做出推断结论万好〈按水准,拒绝”,接3P
7.
751.
960.05,01=
0.05受兄,可以认为该厂成年男子血红蛋白均值与一般成年男子不同,该厂成年男子血红蛋白均值低于一般成年男子某研究者为比较耳垂血和手指血的白细胞数,调
2.查名成年人,同时采取耳垂血和手指血见下表,试比较两者的白细胞数有无不12同表成人耳垂血和手指血白细胞数10g/L编号耳垂血手指血
19.
76.
726.
25.
437.
05.
745.
35.
058.
17.
569.
98.
374.
74.
685.
84.
297.
87.
5108.
67.
0116.
15.
3129.
910.3[参考答案]本题为配对设计资料,采用配对检验进行分析r建立检验假设,确定检验水平1HO|id=0,成人耳垂血和手指血白细胞数差异为零成人耳垂血和手指血白细胞数差异不为零Hl jidwO,a=
0.05计算检验统计量2Zd=lL6,Z-=
20.36d=Z〃〃=
11.6/12=
0.967一
20.36-------------=
0.912Sd=12-1殍i d-%d—0d
0.967=
3.672~s~s-~s/^^~s/4^t~
0.912/V127l dd1』的』|,拒绝接受差别有统计学意义,可以认为两者的
3.672P
0.05,H0,Hl,2n-\白细胞数不同分别测得名健康人和名度肺气肿病人痰中%抗胰蛋白酶含量如下
3.1513m g/L表,问健康人与度肺气肿病人因抗胰蛋白酶含量是否不同ni表健康人与度肺气肿患者抗胰蛋白酶含量HI alg/L健康人HI度肺气肿患者
3.
63.
42.
23.
74.
15.
4433.
62.
66.
81.
94.
71.
72.
90.
64.
81.
95.
61.
34.
11.
53.
31.
74.
31.
31.
31.9[参考答案]由题意得,Xi=
2.067,5,=
1.015;X=4,323,邑=
1.1072本题是两个小样本均数比较,可用成组设计检验,首先检验两总体方差是否相等t即两总体方差相等H0:ol2=o22,即两总体方差不等Hl:012ro22,a=
0.05sl
1.1072F=S-
1.0152=
1.19尸.F°0512J4\故按水准,不拒绝差别2/4=
2.
531.19,F P
0.05,a=
0.05H0,5无统计学意义故认为健康人与度肺气肿病人抗胰蛋白酶含量总体方差相等,可直HI al接用两独立样本均数比较的检验t建立检验假设,确定检验水平1”=心,健康人与度肺气肿病人/抗胰蛋白酶含量相同ni兄从工外,健康人与度肺气肿病人%抗胰蛋白酶含量不同nia=O.O5计算检验统计量2电122/=-------------z------n\+%-2=i12用-又_吊-匕2-1I——片—治又「又S S=
5.63确定值,做出推断结论3P取拒绝接受差别有统计学意义,可认为健康人与度肺t=
5.63p O.OO1,HO,Hl,ni0°1/2,26,气肿病人抗胰蛋白酶含量不同al.某地对例正常成年男性面部上颌间隙进行了测定,得其结果如下表,问不同身高4241正常男性其上颌间隙是否不同?表某地名正常男性上颌间隙241cm_______________________________________身高例数均数标准差cm161〜
1160.
21890.2351172〜
1250.
22800.2561[参考答案]本题属于大样本均数比较,采用两独立样本均数比较的检验由上表可知,u々二116,*=02189,5=02351%=125,=
0.2280,=
0.2561‘2建立检验假设,确定检验水平1”从不同身高正常男性其上颌间隙均值相同=42,氏不同身高正常男性其上颌间隙均值不同a=
0.05计算检验统计量2x-x x,-x}u=-1-------=刀又一又/几S S%+S=
0.9122确定值,做出推断结论3P故〉按水准,不拒绝差别无统计学意义,尚不能认u=
0.91vl.96,P
0.05,a=
0.05H0,为不同身高正常男性其上颌间隙不同.将钩端螺旋体病人的血清分别用标准株和水生株作凝溶试验,测得稀释倍数如5下表,问两组的平均效价有无差别?表钩端螺旋体病患者凝溶试验的稀释倍数标准株~100200400400400400800160016001600320032003200水生株1001001002002002002004004008001600[参考答案]本题采用两独立样本几何均数比较的检验t拒绝接受差别有统计学意义,可认为两组的平均效价有t=
2.689t
0.05/2,22,P
0.05,H0,Hl,差别.为比较男、女大学生的血清谷胱甘肽过氧化物酶()的活力是否相同,6GSH-Px某医生对某大学岁大学生随机抽查男生名,女生名,测定其血清谷18〜224846胱甘肽过氧化酶含量(活力单位),男、女性的均数分别为和男、女
96.
5393.73,性标准差分别为和问男女性的是否相同?[参考答案]
7.
6614.97GSH-Px由题意得多=48,“2=46,=
93.73,=
14.97本题是两个小样本均数比较,可用成组设计检验或检验,首先检验两总体方差是否相t t等即两总体方差相等H0:ol2=o22,即两总体方差不等Hl:ol2Wo22,a=
0.05s
27.662F=S
14.972=
3.82=故差别有统计学意义,按水准,拒绝接受故认为男、pvo.05,a=
0.05H0,H1,F=
3.82F°Q5(47,45),女大学生的血清谷胱甘肽过氧化物酶的活力总体方差不等,不能直接用两独立样本均数比较的检验,而应用两独立样本均数比较的检验t t按水准,e
0.05/2=
2.009,t t
0.05/2,P
0.05,a=
0.05不拒绝差别无统计学意义,尚不能认为男性与女性的有差别HO,GSH-Px(沈其君,施榕)第六章方差分析练习题
一、单项选择题方差分析的基本思想和要点是
1.组间均方大于组内均方组内均方大于组间均方A.B.不同来源的方差必须相等两方差之比服从分布C.D.F总变异及其自由度可按不同来源分解E.方差分析的应用条件之一是方差齐性,它是指
2.各比较组相应的样本方差相等各比较组相应的总体方差相等A.B.组内方差二组间方差.总方差=各组方差之和C.D总方差=组内方差+组间方差E.完全随机设计方差分析中的组间均方反映的是
3.C随机测量误差大小某因素效应大小A.B.处理因素效应与随机误差综合结果全部数据的离散度C.D.各组方差的平均水平E.对于两组资料的比较,方差分析与检验的关系是
4.t检验结果更准确方差分析结果更准确A.t B.检验对数据的要求更为严格近似等价C.t D.完全等价E.多组均数比较的方差分析,如果尸°则应该进一步做的是
5.5,两均数的检验区组方差分析A.t B.方差齐性检验检验C.D.4确定单独效应E.答案EBCED
二、计算与分析在评价某药物耐受性及安全性的期临床试验中,对符合纳入标准的名健康自愿者随
1.I40机分为组,每组名,各组注射剂量分别为、、、观察小时后部分凝
4100.5U1U2U3U,48血活酶时间(s)试比较任意两两剂量间的部分凝血活酶时间有无差别?各剂量组48小时部分凝血活酶时间(s)
0.5U1U2U3U
36.
840.
032.
933.
034.
435.
537.
930.
734.
336.
730.
535.
335.
739.
331.
132.
333.
240.
134.
737.
431.
136.
837.
639.
134.
333.
440.
233.
529.
838.
338.
136.
635.
438.
432.
432.
031.
239.
835.
633.8[参考答案]如方差齐同,则采用完全随机设计的方差分析2222经Bartlett方差齐性检验,力=
1.8991,v=3o由于力幻=
7.81,7Zo05*3,故可认为四组小时部分凝血活酶时间的总体方差齐同,于是采用完全P
0.05,48随机设计的方差分析对四个剂量组部分凝血活酶时间进行比较提出检验假设,确定检验水准1从即四个剂量组部分凝血活酶时间的总体均数相同=42=〃3=〃4,乩出、外、出、不全相同,即四个剂量组部分凝血活酶时间的总体均数不全相同〃4a=
0.05计算检验统计量,列于方差分析表中2方差分析表变异来源平方和自由度-均方产值SS MS处理组间
101.
0860333.
69534.80组内误差
252.
4780367.0133总变异
353.564039确定值,做出推断结论3分子自由度/分母自由度查产界表方差分析R=3,4=36,、F FF用,由于/故尸,按照=
4.80,
0.053,36=
2.
870.053,36,的显著性水准,拒绝”,接受差别有统计学意义,可认为四个剂量组部分“L凝血活酶时间的总体均数不全相同,进而需进行均数间多重比较本题采用法进行多重比较SNK提出检验假设,确定检验水准1即任意两组部分凝血活酶时间的总体均数相同H乩:建手”即任意两组部分凝血活酶时间的总体均数不相同a=
0.05计算检验统计量,用标记字母法标记2多重比较结果«=
0.05组另U均数例数SNK标记1U
37.83010A2U
35.10010B3U
34.37010B
0.5U
33.62010B做出推断结论3与与与间差别有统计学意义标记字母不同,可认为与1U
0.5U,1U2U,1U3U1U
0.5U,与与间部分凝血活酶时间的总体均数不同1U2U,1U3U、、组彼此间差别无统计学意义均含有字母可认为这三组部分凝血活酶
0.5U2U3U B,时间的总体均数相同为探讨小剂量地塞米松对急性肺损伤动物模型肺脏的保护作用,将只二级
2.36[参考答案]从总体中抽取样本,其样本应具有“代表性”、“随机性”和“可靠性”代表性就是要求样本中的每一个个体必须符合总体的规定1随机性就是要保证总体中的每个个体均有相同的几率被抽作样本2可靠性即实验的结果要具有可重复性,即由科研课题的样本得出的结果所推3测总体的结论有较大的可信度由于个体之间存在差异,只有观察一定数量的个体方能体现出其客观规律性每个样本的含量越多,可靠性会越大,但是例数增加,人力、物力都会发生困难,所以应以“足够”为准需要作“样本例数估计”什么是两个样本之间的可比性?[参考答案]可比性是指处理组临床设计中称为治疗组与对照组之间,除处理因素不同外,其他可能影响实验结果的因素要求基本齐同,也称为齐同对比原则马斌荣第二章集中趋势的统计描述练习题
一、单项选择题某医学资料数据大的一端没有确定数值,描述其集中趋势适用的统计指标是
1.中位数几何均数A.B..均数%百分位数C D.频数分布E.算术均数与中位数相比,其特点是
2.不易受极端值的影响能充分利用数据的信息A.B.抽样误差较大.更适用于偏态分布资料C.D更适用于分布不明确资料E.一组原始数据呈正偏态分布,其数据的特点是***正的反而小!
3.数值离散度较小数值离散度较大A.B.数值分布偏向较大一侧数值分布偏向较小一侧C.D.数值分布不均匀E.将一组计量资料整理成频数表的主要目的是
4.化为计数资料便于计算A.B.形象描述数据的特点为了能够更精确地检验C.D.提供数据和描述数据的分布特征E.
5.6人接种流感疫苗一个月后测定抗体滴度为120,
140.
180、
180、
1160、1320,求平均滴度应选用的指标是均数几何均数A.B.中位数百分位数C.D.倒数的均数E.答案:ABDEB
二、计算与分析现测得名乳腺癌患者化疗后血液尿素氮的含量分别为
1.10mmol/L试计算其均数和中位数
3.43296,
4.43,
3.03453,
5.25,
5.64,
3.82,
4.28,
5.25,[参考答案]-
3.43+
2.96+
4.43+3・03+4・53+
5.25+
5.64+
3.82+
4.28+
5.25=
4.26mmol/LX=-----------------------------------------------------------------------------
104.28+
4.43=
4.36mmol/L230某地例岁健康男子血清总胆固醇值测定结果如下
2.10030-40mg/dl202165199234200213155168189170188168184147219174130183178174228156171199185195230232191210195165178172124150211177184149159149160142210142185146223176241164197174172189174173205224221184177161192181175178172136222113161131170138248153165182234161169221147209207164147210182183206209201149174253252156编制频数分布表并画出直方图;1根据频数表计算均值和中位数,并说明用哪一个指标比较合适;2计算百分位数£、足、和3555[参考答案]编制频数表1某地例100图某地例岁健康男子血清总胆固醇值的频数分布10030-40岁健康男30-40计算均数和中位数2子血清总胆固-110+
7.5x2+125+
7.5x4・・・+245+
7.5x3A二---醇值的频数表=
182.9mg/dl100n I”100x
0.5-3315=
179.4mg/dl共=170+---------------------x5027从上述直方图能够看出此计量指标近似服从正态分布,选用算术均数较为合适算术均数适合描述分布对称的数据计算百分位数3「厂/100x
0.05-21/”、Q=125H--------------------xl5=
136.25mg/dl100x
0.25—17匕=155+x15=
162.5mg/dl\6100x
0.75-72%=200+15=
203.5mg/dl-------------------x13甘油三脂频数累积频数累积频率mg/dL2341110〜222466125〜111717140〜163333155〜276060170〜127272185〜138585200〜79292215〜230〜597973100100245〜合计100—画直方图:“…100x
0.95-92«…,…、%=230T-----------------------xl5=239mg/dl测得名肝癌病人与名正常人的血清乙型肝炎表面抗原滴度如下表,
3.1016HBsAg试分别计算它们的平均滴度肝癌病人与正常人的血清乙肝表面抗原HBsAg滴度___________________滴度倒数正常人数肝癌病人数87I16523213643212801肝癌病人与正常人的血清乙肝表面抗原滴度测定结果HBsAg滴度倒数正常人数力肝癌病人数%力X IgxIgx%Igx
8710.
906.
300.
9016521.
206.
002.
4032131.
501.
504.
5064321.
815.
433.
62128012.
110.
002.
11256012.
410.
002.41合计1610—
19.
2315.94’
19.
23、,
15.
94、X
39.26氏
15.92正常人乙肝表面抗原滴度为HBsAg1:
15.92肝癌病人乙肝表面抗原HBsAg滴度为
139.26李康离散程度的统计描述练习题
一、单项选择题变异系数主要用于
1.比较不同计量指标的变异程度比较相同计量单位数据变异度大小的是标准差A.ps衡量正态分布的变异程度B.衡量测量的准确度衡量偏态分布的变异程度C.D.衡量样本抽样误差的大小E.对于近似正态分布的资料,描述其变异程度应选用的指标是
2.变异系数离均差平方和A.B.极差四分位数间距C.D.标准差E.某项指标医学参考值范围表示的是
3.95%检测指标在此范围,判断“异常”正确的概率大于或等于A.95%检测指标在此范围,判断“正常”正确的概率大于或等于B.95%在“异常”总体中有的人在此范围之外C.95%在“正常”总体中有的人在此范围D.95%检测指标若超出此范围,则有的把握说明诊断对象为“异常”E.95%应用百分位数法估计参考值范围的条件是
4.数据服从正态分布数据服从偏态分布A.B.有大样本数据数据服从对称分布C.D.数据变异不能太大E.已知动脉硬化患者载脂蛋白的含量呈明显偏态分布,描述其个体差
5.B mg/dl异的统计指标应使用全距标准差A.B.变异系数方差C.D.四分位数间距E.答案AEDBE
二、计算与分析下表为例垂体催乳素微腺瘤的病人手术前后的血催乳素浓度,试说明用何种
1.10指标比较手术前后数据的变异情况较为合适表手术前后患者血催乳素浓度(ng/ml)___________________________________血催乳素浓度例号术前术后12764128801103160028043246153981056266437500258176030095002151022092[参考答案]血催乳素浓度术前均值=术后均值=手术前后两组均值相差
672.4ng/ml,
127.2ng/ml较大,故选择变异系数作为比较手术前后数据变异情况比较合适术前元=
672.4,S=
564.65空竺CV=x100%=
83.98%
672.4术后又=
127.2,S=
101.2710127CV=——xl00%=
79.61%
127.2可以看出以标准差作为比较两组变异情况的指标,易夸大手术前血催乳素浓度的变异某地例岁正常成年男子的血清总胆固醇测量值近似服从均数为
2.14430〜45标准差为的正态分布
①试估计该地岁成年男子血
4.95mmol/L,
0.85mmol/L30〜45清总胆固醇的参考值范围;
②血清总胆固醇大于的正常成年男子95%
5.72mmol/L约占其总体的百分之多少?[参考答案]
①正常成年男子的血清总胆固醇测量值近似服从正态分布,故可按正态分布法处理又因血清总胆固醇测量值过高或过低均属异常,所以应计算双侧参考值范围下限()X-
1.96S=
4.95-
1.96x
0.85=
3.28mol/L上限X+
1.96S=
4.95+
1.96x
0.85=
6.62(l/L)mmo即该地区成年男子血清总胆固醇测量值的参考值范围为95%
3.28mmol/L〜
6.62mmol/Lo
②该地正常成年男子的血清总胆固醇测量值近似服从均数为标准差为
4.95mmol/L,的正态分布,计算对应的标准正态分布〃值
0.85mmol/L
5.72mmol/L«
0.91u二----------------------------------------
0.85问题转化为求〃值大于的概率由于标准正态分布具有对称性,所以值大
0.91M于的概率与〃值小于一的概率相同查附表得,
①-〃=所以
0.
910.9111814,说血清总胆固醇大于的正常成年男子约占其总体的
5.72mmol/L
18.14%某地例正常成人血铅含量的频数分布如下表
3.200简述该资料的分布特征1若资料近似呈对数正态分布,试分别用百分位数法和正态分布法估计该地正常2成人血铅值的参考值范围95%表某地例正常成人血铅含量的频数分布200|imol/L血铅含量频数累积频数
0.00~
770.24-
49560.48~
451010.72—
32133281610.96〜
1.20-
13174141881.44〜
1.68-
41921.92-
41962.16-
11972.40-
219912002.64〜[参考答案]从表可以看出,血铅含量较低组段的频数明显高于较高组段,分布不对称同1正态分布相比,其分布高峰向血铅含量较低方向偏移,长尾向血铅含量较高组段延伸,数据为正偏态分布某地例正常成人血铅含量的频数分布200|imol/L血铅含量组中值频数累积频数累积频率
0.00〜
0.
12773.
50.24-
0.
36495628.
00.48-
0.
604510150.
50.72-
0.
843213366.
51.
082816180.
50.96〜
1.
321317487.
01.20〜
1.44-
1.
561418894.
01.68—
1.
80419296.
01.92-
2.
04419698.
02.16—
2.
28119798.
52.40—
2.
52219999.5因为正常人血铅含量越低越好,所以应计算单侧参考值范围295%百分位数法第百分位数位于组段,组距为频数为该组段以前的95%
1.68〜
0.24,4,累积频数为故188,n200x
0.95-188八〜1/TX1・68+-------------------------x
0.24=
1.80|imol/LQ5=即该地正常成人血铅值的参考值范围为小于95%L80Nmol/L正态分布法将组中值进行变换,根据题中表格,得到均值和标准差计算表log某地例正常成人血铅含量均值和标准差计算表200Nmol/L血铅含量组中值组中值%频数1g J
0.00〜
0.12-
0.927-
6.
445.
92480.24-
0.36-
0.4449-
21.
569.
48640.48-
0.60-
0.2245-
9.
92.
1780.72-
0.84-
0.0832-
2.
560.
20481.
080.
03280.
840.
02520.96〜
1.20-
1.
320.
12131.
560.
18721.44-
1.
560.
19142.
660.
50541.68-
1.
800.
2641.
040.
27041.92-
2.
040.
3141.
240.
38442.16-
2.
280.
3610.
360.
12962.40-
2.
520.
4020.
800.
32002.64—
2.
760.
440.
440.19361合计——200-
31.
5219.8098计算均值和标准差--3152二二-X
0.1576200$/
19.8098--
31.522/200八1V200-1单侧参考值范围95%X+
1.655=-
0.1576+
1.65x
0.2731=
0.29301g-
10.2930=
1.96〃mol/L即该地正常成人血铅值的参考值范围为小于与百分位数法相比两95%
1.96Nmol/L,者相差不大李康第四章抽样误差与假设检验练习题
一、单项选择题样本均数的标准误越小说明
1.观察个体的变异越小观察个体的变异越大A.B.抽样误差越大由样本均数估计总体均数的可靠性越小C.D.由样本均数估计总体均数的可靠性越大(标准误反映抽样误差的大小,正)E..抽样误差产生的原因是2样本不是随机抽取测量不准确A.B.资料不是正态分布个体差异C.D.统计指标选择不当E.对于正偏态分布的的总体,当样本含量足够大时,样本均数的分布近似为
3.正偏态分布负偏态分布A.B.正态分布分布C.D.t标准正态分布E.假设检验的目的是
4.检验参数估计的准确度检验样本统计量是否不同A.B.检验样本统计量与总体参数是否不同检验总体参数是否不同C.D.检验样本的值是否为小概率E.P根据样本资料算得健康成人白细胞计数的可信区间为
5.95%
7.2X109/L〜
9.1X109/L,其含义是估计总体中有的观察值在此范围内A.95%总体均数在该区间的概率为B.95%样本中有的观察值在此范围内C.95%该区间包含样本均数的可能性为D.95%该区间包含总体均数的可能性为E.95%答案EDCDE
二、计算与分析为了解某地区小学生血红蛋白含量的平均水平,现随机抽取该地小学生人,算450得其血红蛋白平均数为标准差为试计算该地小学生血红蛋白平均数10L4g/L,L5g/L,的可信区间95%[参考答案]样本含量为属于大样本,可采用正态近似的方法计算可信区间450,X=
101.4S=
1.5,n=4509=
0.07可信区间为95%卞阳、=
101.4-
1.96x
0.07=
101.26,/TX+u.S-
101.4+
1.96x
0.07=
101.54a/2上限:g/L下限g/LX即该地成年男子红细胞总体均数的可信区间为95%
101.26g/L〜10L54g/L研究高胆固醇是否有家庭聚集性,已知正常儿童的总胆固醇平均水平是现测得名曾患心脏病且胆固醇高的子代儿童的胆固醇平均水平为175mg/dh100标准差为问题
207.5mg/dh30mg/dl
①如何衡量这名儿童总胆固醇样本平均数的抽样误差?100
②估计名儿童的胆固醇平均水平的可信区间;1095%
③根据可信区间判断高胆固醇是否有家庭聚集性,并说明理由[参考答案]。
个人认证
优秀文档
获得点赞 0