还剩10页未读,继续阅读
本资源只提供10页预览,全部文档请下载后查看!喜欢就下载吧,查找使用更方便
文本内容:
第章自相关性一思考与练习题参考答案6
一、简述题略
二、单选题1-5CADBA6-10BADBB11-15BDADA
三、多选题l.ABCD
2.ABCD
3.AD
4.ABCD
5.BD
6.ABCD
7.ABC
8.BD
9.ABCD
10.BCD
11.ACD
12.ABCD
13.CD
14.ABCD
15.AB
四、判断题
1.V
2.X
3.V
4.V
5.V
6.X
7.X
8.V
9.X
10.X
11.V
12.V
13.X
14.V
15.V
五、填空题
1.自相关或序列相关
2.负
3.自相关或序列相关4,一阶正自相关
5.LS YC XX-l Y-l
6.正自相关
7.正自相关
8.负自相关
9.降低
10.低估
11.正
12.存在
13.1-DW/
214.低估
15.存在
六、计算题
1.下表为1990-2020年我国进出口总额Y和国内生产总值X的数据表6-31990-2020我国进出口总额与国内生产总值(单位亿元)年份进出口总额国内生产总值年份进出口总额国内生产总值Y XY Xt=
0.
036933.5047R=
0.9834F=
1122.564DW=
0.25652检验并修正模型的自相关性自相关的检验
①图示法根据图6-11线性回归模型回归结果,在命令窗口中输入命令:GENR E=RESIDSCAT E-l E输出结果如图6-12所示:10,000-5,000-10,000-15,000-20,000-10,000-5,00002,5007,500图6-12e-与q的散点图由图6-12散点图可以看出,大部分点落在第I、in象限,表明随机误差性存在正自相
②DW检验DW=
0.2565,因为n=21,k=l,取显著性水平=
0.05时,查表得力=
1.221,=
1.420,而0〈DW=
0.2565d/,所以存在一阶正自相关
③偏相关系数检验在方程窗口中点击View/Residual Diagnostics/Correlogram-Q-statistics,并输入滞后期为12,则会得到残差,与
6.2,…,T2的各期相关系数和偏相关系数,如图6-13所示View Proc Object Print Name Freeze Estimate ForecastStats ResidsCorrelogram of ResidualsDate:08/18/22Time:12:34Sample:20002020Included observations:21Autocorrelation Partial Correlation AC PAC Q-Stat Prob
10.
6770.
67711.
0550.
00120.370-
0.
16214.
5380.
00130.
2040.
04315.
6590.
0010.
00340.032-
0.
16415.
6890.0055-
0.183-
0.
22516.
6970.0036-
0.312-
0.
09219.
8280.0017-
0.375-
0.
12824.
6680.0008-
0.383-
0.
05930.
1110.0009-
0.329-
0.
02134.
4720.00010-
0.246-
0.
04337.
1240.00011-
0.189-
0.
10438.
8580.00012-
0.161-
0.
14040.255图673偏相关系数检验从图6-13中可以看出,模型的第1期偏相关系数的直方块超过了虚线部分,因此表明回归模型仅存在着一阶自相关
④BG检验(LM检验)在方程窗口中点击View/Residual Diagnostics/Series Correlation LM Test,并选择滞后期为2,则会得到如图6-14所示的信息View|Proc|Object||Print|Name|Freeze I I EstimateIForecast|StatsI Resids|Breusch-Godfrey SerialCorrelation LM TestiNull hypothesis:No serialcorrelation atup to2lagsF-statistic
62.93008Prob F2,1700000Obs*R-squared
18.50105Prob.Chi-Square
20.0001Test Equation:Dependent Variable:RESIDMethod:Least SquaresDate:08/18/22Time:12:34Sample:20002020Included observations:21Presample missingvalue laggedresiduals set to zero.Variable CoefficientStd.Error t-Statistic Prob.C
1677.
6401289.
0401.
3014640.2105X-
0.
0051660.002909-
1.77597600936RESID-
115558020.219582708528500000RESID-2-
04637430.313946-
14771430.1579R-squared0881003Mean dependent var-
1.30E-11Adjusted R-squared0860003S.D.dependent var6792419S E.of regression2541463Akaike infocriterion1868851Sum squaredresid
1.10E+08Schwarz criterion
18.88747Log likelihood-
192.2294Hannan-Quinn criter.
18.73169F-statistic
41.95339Durbin-Watson stat1876071ProbF-statistic0000000qoaldd图674BG检验从图6-14中可以看出,几R=
18.5011双心⑵=
5.9915,临界概率PR.0001«=
0.05,因此辅助回归模型是显著的,即存在自相关性又因为e-的回归系数均显著地不为0,说明回归模型仅存在一阶自相关性自相关性的补救采用广义差分法法修正自相关模型,即在LS命令中加上AR1,键入命令:LS YC XAR1在EViews
12.0版本在方程窗口中点击Estimate\Options按钮,在ARMA\Method选择框选择GLS广义最小二乘法,则估计结果如图6-15所示|View|ProcObject Print Name Freeze,Estimate ForecastStats Resids|Dependent Variable:YMethod:ARMA GeneralizedLeast SquaresBFGSDate:08/18/22Time:12:35Sample:20002020Included observations:21Convergence achievedafter6iterationsCoefficient covariancecomputed usingouter productof gradientsd f.adjustment forstandard errorscovarianceVariable CoefficientStd.Error t-Statistic Prob.C-
36.
8493312539.31-
0.
0029390.9977X
0.1555950025577608332100000AR
10.
9553860.
1554806.
1447530.0000R-squared
0.996012Mean dependent var
79728.12Adjusted R-squared0995569S D dependent var
52649.93S E.of regression3504685Akaike infocriterion1940930Sum squaredresid
2.21E+08Schwarz criterion
19.55852Log likelihood-
200.7977Hannan-Quinn criter.
19.44169F-statistic
2247.824Durbin-Watson stat
0.507317ProbF-statistic0000000Inverted ARRoots.96图6-15加入AR项的回归模型估计结果图6-15表明,估计过程经过6次迭代后收敛;调整后模型的DW=O.5073,因为n=21,k=l,取显著性水平=
0.05时,查表得乙=
1.221,=1,420,而O〈DW=
0.5073<叁,说明模型仍然存在一阶自相关性;再进行BG检验也表明仍然存在一阶自相关性这说明之前设定的一元线性回归模型可能不是最适合的,我们可以尝试重新设定回归模型,如双对数、对数、指数、二次多项式等不同形式,进而加以比较分析
19905560.
1218872.
92006140974.
74219438.
519917225.
7522005.
62007166924.
07270092.
319929119.
6227194.
52008179921.
47319244.
6199311271.
0235673.
22009150648.
06348517.
7199420381.
948637.
52010201722.
34412119.
3199523499.
9461339.
92011236401.
95487940.
2199624133.
8671813.
62012244160.
21538580199726967.
24797152013258168.
89592963.
2199826849.
6885195.
52014264241.
77643563.
1199929896.
2390564.
42015245502.
93688858.
2200039273.
25100280.
12016243386.
46746395.
1200142183.
62110863.
12017278099.
24832035.
9200251378.
15121717.
42018305008.
1919281.
1200370483.
451374222019315627.
3986515.
2200495539.
09161840.
22020322215.
21015986.
22005116921.
77187318.9资料来源国家统计局.中国统计年鉴-北京中国统计出版社,2021[M].
2021.
(1)试建立我国进出口总额Y和国内生产总值X的回归模型
(2)检验模型是否存在自相关性
(3)请使用广义差分法修正模型的自相关性【计算题参考解答】11试建立我国进出口总额Y和国内生产总值X的回归模型利用Eviewsl
2.0,绘制国内生产总值X与进出口总额Y相关图,在命令窗口中输入命令SCAT XYGraph:UNTITLED Workfile:UNTITLED::Untitled\|回|IB^J〔〔;ViewProcObjectPrint Name FreezeOptions|Update|.AddTextLine/ShadeRemove350,000a°300,000a250,000J°a200,000-A150,000°100,000750,000:*d*♦o-0200,000600,0001,000,000X图6-1进出口总额Y与国内生产总值X相关图由图6-1相关图可以看出,国内生产总值X与进出口总额Y二者的曲线相关关系较为明显可将函数初步设定为线性、双对数、对数、指数、二次多项式等不同形式,进而加以比较分析经模型比较,双对数较优,因此将模型设定为In y=Q+/7ln x+£ttt式中,%为进出口总额;%为国内生产总值;J为随机误差项利用Eviewsl
2.0,建立工作文件,输入数据,利用最小二乘法估计双对数模型,在命令窗口中输入命令GENR LNY=LOGYGENR LNX=LOGXLS LNYC LNX结果如图6-2所示lny=-
1.3761+
1.03841nxt=-
3.
173929.2250R=
0.9672F=
854.1031DW=
0.2270[=1Equation:EQ01Workfile:UNTITLED::Untitled\|0||回View ProcObject PrintName FreezeEstimate ForecastStats ResidsDependent Variable:LNY Method:Least SquaresDate:08/18/22Time:11:58Sample:19902020Included observations:31Variable CoefficientStd.Error t-Statistic Prob.C-
1.
3760870.433560-
3.
1739210.0035LNX
1.
0383870.
03553129.
225040.0000R-squared
0.967161Mean dependent var
11.23493Adjusted R-squared
0.966029S.Ddependentvar
1.271023S.E.of regression
0.234266Akaike infocriterion-0002382Sum squaredresid
1.591529Schwarz criterion
0.090133Log likelihood
2.036927Hannan-Quinn criter.
0.027775F-statistic
854.1031Durbin-Watson stat
0.226965ProbF-statistic0,000000图6-2双对数模型的回归结果2检验模型是否存在自相关性
①图示法根据图6-2双对数模型回归结果,在命令窗口中输入命令:GENR E=RESIDSCAT E-l E输出结果如图6-3所示:View ProcObject Print NameFreezeOptionsUpdateAddTextLine/ShadeRemove.5o o.4o°.3°o.2°o-1°oo.0O oo°o°o on°o o°o o-.3o o-.4--3-.2-.
1.
0.
1.
2.
3.
4.5E-l图6-3残差图由图6-3散点图可以看出,大部分点落在第LIII象限,表明随机误差性存在正自相关
②DW检验因为n=31,k=l,取显著性水平=
0.05时,查表得力=
1.363,d=
1.496,而[f0DW=
0.2270,所以存在一阶(正)自相关
③偏相关系数检验在方程窗口中点击View/Residual Diagnostics/Cor re1ogr am-Q-statistics,并输入滞后期为16,则会得到残差G与令_”弓_2,…的各期相关系数和偏相关系数,如图6-4所示View ProcObject PrintName FreezeEstimate ForecastStats ResidsCorrelogramof ResidualsDate:08/18/22Time:12:03Sample:19902020Included observations:31Autocorrelation PartialCorrelation ACPAC Q-Stat Prob—
0.
8420.
84224.
1680.000l________111l-I I匚
120.675-
0.
11640.
2400.000l_____|I[
130.514-
0.
08049.
8790.000ZJi匚
40.286-
0.
34052.
9750.000l1J i
1150.
1180.
05753.
5210.000l II[6-
0.014-
0.
04153.
5290.000l i1I□匚7-
0.151-
0.
10454.
5010.000I1l匚I匚18-
0.254-
0.
11857.
3760.000□匚9-
0.355-
0.
17263.
2450.000I1二10-
0.
4150.
02671.
6230.000I11匚11-
0.451-
0.
10282.
0040.000l I1l I匚112-
0.521-
0.28096,
6350.000II1113-
0.
5140.
048111.
630.00011114-
0.
4670.
006124.
740.000=□115-
0.
3800.
172133.
970.00011I□16-
0.
2280.
047137.
500.000111图6-4双对数模型的偏相关系数检验从图6-4中可以看出,双对数模型的第1期偏相关系数的直方块超过了虚线部分,因此存在着一阶自相关
④BG检验(LM检验)在方程窗口中点击View/Residual Diagnostics/Series Correlation LMTest,并选择滞后期为2,则会得到如图6-5所示的信息View ProcObject||PrintName|FreezeEstimate Forecast|Stats Resids|Breusch-Godfrey SerialCorrelationLMTest:Null hypothesis:No serialcorrelation atup to2lagsF-statistic
42.85327Prob.F2,
270.0000Obs*R-squared
23.57363Prob Chi-Square200000Test Equation:Dependent Variable:RESIDMethod:Least SquaresDate:08/18/22Time:12:05Sample:19902020Included observations:31Presample missingvalue laggedresiduals setto zero.Variable CoefficientStd.Error t-Statistic Prob.C
0.
1411320.
2241260.
6297020.5342LNX-
0.
0122680.018410-
0.
6663750.5108RESID-
10.
9717230.
1914455.
0757320.0000RESID-2-
00853700.199903-
0.
4270580.6727R-squared
0.760440Mean dependentvar
9.28E-16Adjusted R-squared
0.733822S D.dependentvar
0.230328S.E.of regression
0.118832Akaike infocriterion-
1.302301Sum squaredresid
0.381267Schwarz criterion-
1.117270Log likelihood
24.18566Hannan-Quinn criter.-
1.241985F-statistic
28.56885Durbin-Watson stat
1.884190ProbF-statistic
0.000000图6-5双对数模型的BG检验从图6-5中可以看出,成2力.⑵=
5.第15,临界概率P=
0.0000a=
0.05,5736O5因此辅助回归模型是显著的,即存在自相关性又因为的回归系数均显著地不为0,说明双对数模型存在一阶自相关性O3请使用广义差分法修正模型的自相关性采用广义差分法来修正自相关模型,即在LS命令中加上AR1,键入命令LS LNYC LNXAR1在EViewsl
2.0版本在方程窗口中点击Estimate\Options按钮,在ARMA\Method选择框选择GLS广义最小二乘法,则估计结果如图6-6所示View ProcObject PrintName FreezeEstimate ForecastStats ResidsDependentVariable:LNYMethod:ARMA GeneralizedLeast SquaresBFGSDate:08/18/22Time:12:07Sample:19902020Included observations:31Convergence achievedafter6iterationsCoefficient covariancecomputed usingouter productof gradientsd.f.adjustment forstandarderrorscovarianceVariable CoefficientStd.Error t-Statistic Prob.C-
1.
8219111.203287-
1.
5141110.1412LNX
1.
0659260.
10131210.
521270.0000AR
10.
9231050.
0928259.
9445800.0000R-squared
0.992829Mean dependentvar
11.23493Adjusted R-squared
0.992317S.D.dependentvar
1.271023S.E.of regression
0.111412Akaike infocriterion-
1.397742Sum squaredresid
0.347553Schwarz criterion-
1.258969Log likelihood
24.66500Hannan-Quinn criter.-
1.352506F-statistic
1938.248Durbin-Watson stat
1.707109ProbF-statistic
0.000000Inverted ARRoots.92图6-6加入AR项的双对数模型估计结果图6-6表明,估计过程经过6次迭代后收敛;调整后模型的DW=
1.7071,n=31,k=1,取显著性水平a=
0.05时,查表得力=
1.363,d=
1.496,而4/〈DW=
1.7071V4—4/=
2.504,n说明模型不存在一阶自相关性;再进行偏相关系数检验图6-7和BG检验图6-8,也表明不存在高阶自相关性因此,修正后的中国城乡居民储蓄存款的双对数模型为ln^=-
1.8219+
1.06591nxt=-
1.
514110.5213R2=
0.9928AR1=
0.9231F=
1938.248DW=
1.7071View ProcObjectPrintNameFreezeEstimate ForecastStatsResidsCorrelogramofResidualsDate:08/18/22Time:12:16Sample:19902020Q-statistic probabilitiesadjusted for1ARMA termAutocorrelationPartialCorrelationACPACQ-Stat Prob*i□i□
10.
1440.
1440.7069i Il i i
20.
0550.
0350.
81480.367ai in
30.
2830.
2763.
74280.154ii[i匚4-
0.091-
0.
1854.
05510.256i匚i C5-
0.112-
0.
0974.
54760.337i i i
60.
0610.
0234.
70230.453i L i[7-
0.100-
0.
0355.
12690.528I i8-
0.
0280.
0425.
16220.640i匚i匚9-
0.116-
0.
1935.
79190.671I i]10-
0.
0190.
0835.
80880.759i i
110.
0200.
0095.
82840.829[i[12-
0.089-
0.
0356.
25310.856ii[13-
0.015-
0.
0406.
26660.902Li匚14-
0.085-
0.
1516.
70620.917匚i匚15-
0.289-
0.
21512.
0510.602ii□
160.
0540.
14712.
2510.660i图6-7修正后的双对数模型偏相关系数检验结果View|Proc|Object||Print|Name|Freeze||Estimate|Forecast|Stats|Resids|Breusch-Godfrey SerialCorrelationLMTest:Null hypothesis:No serialcorrelation atup to2lagsF-statistic
0.474362Prob.F2,
260.6276Obs*R-squared
1.091348Prob.Chi-Square
20.5795Test Equation:DependentVariable:RESIDMethod:Least SquaresDate:08/18/22Time:12:17Sample:19902020Included observations:31Coefficient covariancecomputed usingouter productof gradientsPresample missingvalue laggedresiduals setto zero.Variable CoefficientStd.Error t-Statistic Prob.C
0.
0356430.
1355050.
2630360.7946LNX-
0.
0034460.011553-
0.
2983190.7678AR
10.
0076530.
0129980.
5888040.5611RESID-
10.
201168022076309112390.3705RESID-
20.
1003850.
22354604490570.6571R-squared
0.034690Mean dependentvar
0.002445Adjusted R-squared-
0.113819S.D.dependentvar
0.107605S.E.of regression
0.113564Akaike infocriterion-
1.366207Sum squaredresid
0.335318Schwarz criterion-
1.134918Log likelihood2617620Hannan-Quinn enter.-
1.290812F-statistic
0.233588Durbin-Watson stat2039361ProbF-statistic
0.9169106-8修正后的双对数模型BG检验结果
2.影响税收收入的因素众多,其中国内生产总值是影响税收收入的重要指标之一表6-4是2000-2020年我国税收Y与X国内生产总值数据.表6-42000-2020我国税收与国内生产总值单位亿元年份税收Y国内生产总值X
200012581.
51100280.
1200115301.
38110863.
1200217636.
45121717.
4200320017.
31137422200424165.
68161840.
2200528778.
54187318.
9200634804.
35219438.
5200745621.
97270092.
3200854223.
79319244.
6200959521.
59348517.
7201073210.
79412119.
3201189738.
39487940.
22012100614.
285385802013110530.
7592963.
22014119175.
31643563.
12015124922.
2688858.
22016130360.
73746395.
12017144369.
87832035.
92018156402.
86919281.
12019158000.
46986515.
22020154312.
291015986.2资料来源国家统计局,中国统计年鉴北京中国统计出版社,-2021[M].
2021.
(1)试建立税收Y和国内生产总值X的回归模型
(2)检验并修正模型的自相关性【计算题2参考解答】
(1)试建立税收Y和国内生产总值X的回归模型利用Eviewsl
2.0,分别绘制税收(Y)与国内生产总值(X)趋势图和相关图,在命令窗口中输入命令PLOT XYSCAT XY160,000aa140,000°a120,000a°1100,000a80,000a60,000aa40,00020,000/000200,000600,0001,000,000X从图6-9的趋势图可以看出,从图6-9X与Y的趋势图图6-10X与Y的相关图2000—2020年,伴随着国内生产总值(X)的逐年增长,税收(Y)也随之稳步增长,两者呈现出共同增长的趋势;同时,从图6T0的相关图可见,国内生产总值(X)与税收(Y)呈现出较显著的线性相关关系根据以上分析,可将模型函数形式设定为-=—+—十一上式中,匕为税收收入;X,为国内生产总值;j为随机误差项在Eviewsl
2.0中,建立工作文件,输入税收(Y)、国内生产总值(X)的样本数据,在命令窗口中输入命令LS YC X得到图6-11回归结果View ProcObjectPrintNameFreeze||EstimateForecastStats ResidsDependentVariable:YMethod:Least SquaresDate:08/18/22Time:12:29Sample:20002020Included observations:21Variable CoefficientStd.Error t-Statistic Prob.C
104.
14042821.
4170.
0369110.9709X
0.
1699120.
00507133.
504690.0000R-squared
0.983356Mean dependentvar
79728.12Adjusted R-squared
0.982480S.D.dependentvar
52649.93S.E.of regression
6968.874Akaike infocriterion
20.62669Sum squaredresid
9.23E+08Schwarz criterion
20.72617Log likelihood-
214.5802Hannan-Quinn criter.
20.64828F-statistic
1122.564Durbin-Watson stat
0.256534Prob(F-statistic)
0.000000图6-11线性回归模型的回归结果j=
104.1404+
0.1699%。
个人认证
优秀文档
获得点赞 0