还剩25页未读,继续阅读
本资源只提供10页预览,全部文档请下载后查看!喜欢就下载吧,查找使用更方便
文本内容:
分式与分式方程应用期中考试复习本节课我们将重点回顾分式和分式方程的概念、性质和应用同时,我们将针对期中考试中常见的题型进行讲解和练习课程导入回顾基础知识引发学习兴趣营造积极氛围课前回顾相关基础知识,为新内容的学习奠通过生动形象的例子,激发学生学习的兴趣营造轻松、活跃的课堂氛围,促进师生互动定坚实基础和积极性和学生之间交流分式的概念分式的本质分式表示一个数与另一个数相除的结果,可以理解为两个量的比值分式定义两个数或代数式相除,其中被除数称为分子,除数称为分母,这两个数或代数式都可以是单项式或多项式分式的定义定义分式是由两个整式构成的,其中一个整式作为分子,另一个整式作为分母,用分数线隔开表示分式可以用字母或数字表示,例如a/b、x/y、3/4限制分母不能为零,因为除以零没有意义分式的基本性质分子分母同乘分子分母同除分式的分子和分母同时乘以同一分式的分子和分母同时除以同一个不为零的数,分式的值不变个不为零的数,分式的值不变约分通分分式的分子和分母约去公因数,将几个分式化成相同分母的分式分式的值不变,以便于进行加减运算分式的化简约分1分子分母同时除以公因式,使分式化简通分2将分母不同的分式化成分母相同的分式,以便于加减合并同类项3在分式化简过程中,如果分子或分母有同类项,可以将它们合并分式与分母有关的性质分母不为零分母的符号12分式中分母不能为零,否则分式无意义分式可以进行约分,约分时要注意分母的符号,因为分母的符号改变会影响整个分式的符号分母的公倍数分母的变形34进行分式加减运算时,需要先找到分母的最小公倍数,才能某些情况下,可以对分式的分母进行变形,方便进行后续的将分式通分运算或化简分数的四则运算加法1同分母分数加法减法2同分母分数减法乘法3分数乘法除法4分数除法分数的四则运算需要掌握分数的基本概念和性质,才能进行正确计算分数加减运算需要同分母,分数乘除运算需要分子相乘、分母相乘分式的乘除通分1将两个分式化为同分母分式约分2将分式约去公因式乘除3分子乘以分子,分母乘以分母化简4将结果化简为最简分式分式的乘除运算和分数的乘除运算类似,需要注意的是要进行通分和约分操作,使运算结果更加简洁明了同时,需要注意分式的符号,避免符号错误导致计算结果错误分式的加减同分母分式加减同分母分式相加减,分子相加减,分母不变异分母分式加减异分母分式相加减,先通分,化为同分母分式,再按同分母分式加减法则进行计算分式加减运算的注意事项计算时注意符号,运算顺序,结果应化简为最简分式分式方程的基本概念定义分式方程是指含有未知数的方程,其中未知数出现在分式的分母或分子中解法解分式方程的关键是将分式方程转化为整式方程,然后求解未知数检验解出未知数后,需要代回原方程进行检验,确保解是正确的分式方程的解法化简方程1先将方程两边化简,并将所有分式化成最简分式去分母2将方程两边同时乘以所有分式的最小公倍数,消去分母解一元一次方程3将去分母后的方程化为一元一次方程,并解出方程的根检验4将解出的根代入原方程,检验是否满足原方程分式方程一般解法移项将所有含未知数的项移到等式的一边,常数项移到另一边通分将所有分式通分,使所有分式的分母相同合并同类项合并等式两边的同类项,得到一个简单的方程解方程解这个简单的方程,求出未知数的值检验将求得的解代回原方程,检验解是否符合原方程分式方程的应用行程问题工程问题例如,两地相距多少公里,一辆例如,几个人完成一项工作需要车以多少速度行驶,求行驶时间多少时间,或者几个人完成一项可以使用分式方程来解决这类工作需要多少时间,可以使用分问题式方程来解决这类问题浓度问题利息问题例如,将两种不同浓度的溶液混例如,将一定金额的钱存入银行合后,求混合溶液的浓度,可以,求多少年后本息和达到多少,使用分式方程来解决这类问题可以使用分式方程来解决这类问题可行域的概念可行域的概念线性规划问题可行域是指满足线性规划问题中所有约束条件的点集这些点在坐在实际问题中,我们要寻找目标函数的最优解,需要在可行域内进标系中形成一个区域,称为可行域行寻找可行域的求解可行域是指满足所有约束条件的点集求解可行域,就是找到满足所有不等式或等式的点的集合图形法1将所有约束条件对应的直线或曲线绘制在坐标系中点代入法2将待判定点坐标代入约束条件,检验是否满足条件区域判断法3利用原点或其他测试点判断区域分式不等式的概念
11.定义
22.类型分式不等式是指含有未知数的分式不等式包括分式大于或小式子,它是一个分式,且分式于一个数,分式大于或小于不等式中的未知数的取值范围另一个分式,分式大于或小于,使不等式成立零等类型
33.解题步骤
44.注意事项求解分式不等式需要先将不等解分式不等式时,需要注意分式化成最简形式,再根据不等母不能为零,以及解集的表示式符号,确定解集方法分式不等式的解法移项1将所有项移到不等式一边,并使另一边为零通分2将不等式两边通分,使分母相同比较大小3比较分子大小,确定不等号的方向解不等式4解出不等式的解集,并注意分母不能为零分式不等式应用工作效率问题利润问题速度问题浓度问题例如,计算工人完成一项工作例如,计算商品的成本、售价例如,分析物体在不同时间段例如,计算混合溶液的浓度,所需时间,考虑工作效率变化和利润率之间的关系,可用分内的运动速度变化情况,可用可用分式不等式描述不同浓度,可用分式不等式描述式不等式描述利润变化趋势分式不等式描述速度变化的规溶液混合后的浓度变化律例题演练通过例题演练巩固分式和分式方程知识点涵盖概念、性质、运算、解方程、应用等方面注重解题步骤和技巧的讲解,培养学生的解题能力帮助学生提高对分式和分式方程的理解和应用作业讲评错误分析优秀案例展示学生们完成作业后,老师需要仔细检查,并针对常见错误进行分老师可以选取一些优秀作业案例,并展示给学生,让学生学习优析和讲解,帮助学生更好地理解知识点秀学生的解题思路和方法老师可以引导学生反思错误原因,并针对性地进行练习,提高解通过优秀案例的展示,激发学生学习兴趣,提升学习积极性题技巧知识点总结分式的定义和性质分式方程的解法分式不等式分式是两个多项式的比,具有多种性质,例通过化简分式方程,然后用代数方法求解方与分式方程类似,分式不等式可以用代数方如乘除运算,加减运算等程法求解常见考点分析
11.分式的化简
22.分式方程的解法熟练掌握分式的基本性质,进掌握分式方程解题步骤,会检行化简,能识别陷阱验解,防止增根出现
33.分式方程的应用
44.分式不等式的解法善于将实际问题转化为数学模熟练掌握分式不等式解题步骤型,理解题意,列出方程,注意分母符号的影响考试复习建议全面复习重点突破涵盖所有重要知识点和公式,确保全面掌握针对考试常考题型和难点进行重点练习和巩固错题分析时间管理认真分析错题,找出错误原因,并进行针对性练习合理规划复习时间,保证充足的练习和休息复习课后问题解答课后复习问题解答是重要环节,帮助学生巩固知识,查漏补缺老师应耐心解答学生疑问,并引导学生思考问题,鼓励学生积极提问对于常见错误,可以进行集中讲解,并提供针对性的练习温故知新回顾知识点重新回顾课程内容,巩固基础知识练习习题通过做习题,检验学习效果,找出薄弱环节提出问题及时将学习过程中遇到的问题记录下来,并在课后向老师或同学请教课程小结本次课程回顾了分式与分式方程的基本概念,并重点讲解了它们的应用学习了如何化简分式,进行分式的四则运算,并掌握了解决分式方程的方法通过例题演练,巩固了知识点,并对常见考点进行了分析。
个人认证
优秀文档
获得点赞 0