还剩24页未读,继续阅读
本资源只提供10页预览,全部文档请下载后查看!喜欢就下载吧,查找使用更方便
文本内容:
带括号的方程课程导入同学们,大家好!今天我们将学习带括号的方程在之前的学习中,我们已经了解了一元一次方程和一元二次方程今天我们将进一步学习带括号的方程,这是一种更复杂但更具实用性的方程类型带括号的方程定义带括号的方程括号内可包含包含括号的方程称为带括号的方程括号内可以包含常数、一次项、二次项等带括号的方程特点结构复杂运算步骤应用广泛带括号的方程包含括号,使方程的结构解决带括号的方程需要先化简括号,再带括号的方程在实际生活和科学研究中更复杂,需要先处理括号内运算进行其他运算,涉及更多步骤应用广泛,可以描述更复杂的问题带括号的方程生成步骤定义变量1根据问题确定未知数,并用字母表示列出等式2根据问题中的条件,将未知数和已知数用等式表示化简方程3利用分配律、合并同类项等方法,将方程化简成最简单的形式求解未知数4运用解方程的方法,求出未知数的值示例一括号内为常数例如2x+3=8,括号内为x+3,这是一个常数,可以将括号外的系数2乘以括号内的每个项,得到2x+6=8示例二括号内为一次项计算过程简化结果将括号内的表达式乘以括号前的系数合并同类项,化简得到最终结果示例三括号内为二次项例如2x2+3x-1=4x-2首先,利用分配律将括号展开2x2+6x-2=4x-2然后,将等式两边移项,合并同类项,得到2x2+2x=0最后,将等式两边同时除以2,得到x2+x=0消除括号的三种方法提公因式使用分配律将括号内的公因式提出来,简化表达将括号外的系数乘以括号内的每一项式同类项合并将括号展开后,合并同类项,简化表达式方法一提公因式识别公因式提公因式12找出括号内和括号外所有项的将公因式提至括号外,并将剩公因式余的项写进括号内简化表达式3合并括号内的同类项,以简化表达式方法二使用分配律分配律应用分配律是指将括号内的式子分别将括号外的系数分别乘以括号内乘以括号外的系数的每个项示例例如,2x+3=2x+6方法三同类项合并识别项合并同类项整理123先将括号内的项和括号外的项分别将同类项合并,得到一个简化的表整理合并后的表达式,得到最终的识别出来达式解带括号的一元一次方程定义特点含有未知数的项,其次数都为1的方程,称为一元一次方程未知数的次数是1,而且未知数只有一个例如2x+3=5,其中x为未知数,其次数为1,只有一个未知数示例一括号内为常数将括号内的常数乘以括号外的系数,并用加减符号连接例如3x+2=3x+6示例二括号内为一次项例如,解方程2x+3=10首先,将括号展开,得到2x+6=10然后,将常数项移到等式右边,得到2x=4最后,将x的系数除以2,得到x=2带括号的一元二次方程定义形式一元二次方程中,含有括号的方一般形式为ax+b2+cx+d=程,称为带括号的一元二次方程0,其中a、b、c、d为常数,且a≠0特点括号内可能包含一次项、常数项,或两者都有示例一括号内为常数示例步骤2x+3=10•分配律2x+6=10•移项2x=4•系数化为1x=2示例二括号内为一次项例如,解方程2x+3=8首先,使用分配律将括号展开2x+6=8然后,移项并合并同类项2x=2最后,系数化为1,得到解x=1带括号的方程解题技巧合理设置变量善用分配律巧用因式分解遇到复杂方程,先将括号内部分设为变量运用分配律,将括号展开,消除括号,方遇到高次方程,可尝试使用因式分解方法,简化解题步骤便求解,简化求解过程技巧一合理设置变量简化方程提升效率通过引入合适的变量,可以将复杂的方程简化为更易于处理的形合理设置变量可以使解题过程更加清晰,减少错误的可能性式技巧二善用分配律简化表达式消除括号12分配律可以将括号内的表达式利用分配律,可以将带括号的乘以括号外的系数,简化方程方程转化为不带括号的方程,便于求解提高效率3熟练运用分配律可以提高解题速度和准确性技巧三巧用因式分解因式分解可以将复杂的方程转化为简通过因式分解可以将方程中的公因式单的形式,便于求解提取出来,简化计算因式分解可以将方程转化为易于解的乘积形式,找到方程的根知识回顾方程定义解方程包含未知数的等式称为方程求出使方程成立的未知数的值,叫做解方程等式性质移项法则等式两边同时加上或减去同一个方程中,将等式一边的某一项移数,等式仍然成立到另一边,要改变该项的符号练习题集锦基础练习巩固基本概念,掌握解题方法拓展练习挑战思维极限,提升解题能力综合练习应用所学知识,解决实际问题课堂小结理解带括号方程的本质掌握消除括号的技巧带括号的方程只是方程的一种特殊形式,其本质是将多个式子合通过提公因式、分配律或合并同类项,可以有效地消除括号,简并在一起化方程课后思考回顾知识应用练习带括号的方程解题步骤尝试解更多带括号的方程拓展探究寻找更多带括号的方程例子。
个人认证
优秀文档
获得点赞 0