还剩4页未读,继续阅读
文本内容:
单项式除以单项式计算题
一、试卷说明本试卷满分100分,主要考查单项式除以单项式的相关知识,通过不同类型的题目全面检测对这一知识点的掌握程度
二、题目部分分
1001.计算\12x13}yY2}+3xy\5分
2.化简\-20ax2}bX3}+—5abX2}\5分
3.计算\18nT{2}rT{3}+-6mrT{2}\5分
4.求\-3x—2}yX3}X2}+-x/{2}厂{3}\的值5分
5.若\2x°{m}yXn}-{3}+4x1{m}/{n}二\frac{l}{2}xj2}y32}\,求\m\,\n\的值10分
6.计算\-\frac{l}⑵a3}b2}-2}+-\frac{1}{4}ab{2}\5分
7.化简\-5a2}b[3}c2}+-15ax3}b八{2}c\5分
8.计算\2xX2}yX3}+6xX3}yX2}\5分
9.已知\£{m}二3\,\d{n}=2\,求a2m]3n}\的值提示先将\£{2m-3n}\转化为与单项式除法有关的形式10分
10.计算\-3丁{2}丁{4}厂{2}+-\frac{l}{3}a^{2}b^{2}\5分
11.化简\4xX3},{2}12}+-2xX2}y[3}\5分
12.计算\-2a-3}bX2}cX3}+-4a一5}/{4}c\5分
13.若\x/m}yXn}X2}+xX2}yX3}7{4旷{5}\,求\m\,求n\的值10分
14.计算\\frac{l}{2}aj2}b33}^{3}-\frac{l}{4}a33}bj4\5分
15.化简\一3x化3}/{2}厂{3}+-9xY5}yX3}\5分
16.计算\2屋⑵bX4}+4aX3}bX2}\5分
17.已知\2Ym}二5\,\2jn=3\,求\2飞3m-2n}\的值提示先将\2八{3m-2n}\转化为与单项式除法有关的形式10分
18.计算\-\frac{l}{3}£{3}bX2}-2}+-\frac{l}{9}aX2}bX3}\5分
19.化简\5x2}y3}+-10x3}y12}\5分
20.计算\—4丁{3}/{2}厂{2}+—2aX2}bX3}\5分
三、答案与解析部分
1.答案\4xX2}y\解析根据单项式除以单项式法则,系数相除\12+3=4\,同底数嘉相除,\xX3}+x=xX3-1}二xY2}\,\*{2}+y=/{2-1}二y\,所以结果为\4xX2}y\
2.答案\4ab\解析系数相除\-20+-5=4\,同底数嘉相除,\d⑵=a^{2-l}=a\,\/{3}+bX2}=bX3-2}=b\,结果为\4ab\
3.答案\-3mn\解析系数相除\18+-6=-3\,同底数氟相除,\nT⑵=nT{2-l}=m\,\n-{3}{2}=rT{3-2=n\,结果为\-3mn\
4.答案\-9x\解析:先计算\-3xY2}yX3}X2}=9x14}y6}\,\-xyX2}X3}=—xY3}y[6}\,再相除,系数\9+-1=-9\,同底数用相除\x,4}+xX3}=x\,\,{6}+yX6}=l\,结果为\-9x\o
5.答案\ni=1\,\n=1\解析先化简\2xXn}yXn}厂{3}=8x「{3m}y3n}\,则\8x-{3m}/{3n}+4x1{m}/{n}=2x^{3m-m}{3n-n}=2x°{2m}/{2n}\,因为\2xX2m}/{2ri}=\frac⑴⑵xX2}yX2}\,所以\2m=2\,\m=1\;\2n=2\,\n=1\o
6.答案\一丁{5}1/{2}\解析先算\-\frac{l}{2}aX3}M{2}厂{2}=\frac{l}{4}£{6}了{4}\,再除以\-\frac{1}{4}ab^{2}\,系数\\frac{1}{4}《-\frac{l}{4}=-l\,同底数[相除\d⑹{5}\l\0/{4}tb2}=b2}\,结果为\-aX5}bX2}\
07.答案\-\frac{5}{3}ab^{4}c\解析先算\-5a-2}bX3}cX2}=25aX4}bX6}」{2}\,再除以\-15a/{3}bX2}c\,系数\25+-15-\frac{5}{3}\,同底数寨相除aX4}+a13}=a\,丁⑹+bX2}=b/4}\,\/{2}+c=c\,结果为\-\frac{5}{3}abX4}c\
8.答案\\frac{4}{3}xX3}y\解析先算\2x2}y/{3}=8xX6}yX3}\,再除以\6xX3}yX2}\,系数\8+6=\frac{4}{3}\,同底数嘉相除\xX6}+xX3{3}\,\yX3-2}=y\,结果为\\frac{4}{3}x{3}y\
09.答案\\frac{9}{8}\解析\d{2m-3n}二aX2m}{3n}=d血}/{2}+aXn}厂{3}\,把\aYm}=3\,\an}二2\代入得\3-{2}+21{3}二9+8=\frac{9}{8}\
10.答案\-272案2}丁{6}\解析先算\-3aY2}bX4}X2}=9aY4}bX8}\,再除以\-\frac{l}{3}a{21b{2}\,系数\9+-\frac{l}{3}=-27\,同底数用相除\aX4}但丁{2}=aX2}\,\了{8}+了{2}=-{6}\,果为・-27ax2}1{6}\
11.答案\-2xX0}y\即\-2y\,\x^{0}=1x\neqO\解析先算\4xX3}yX2}2}=16xX6}y4}\,\-2x[2}y3}=-8xX6}/{3}\,再相除,系数\16+-8=-2\,同底数嘉相除\x{6}-rx{6}=x{0}=1x\neq0\I\yX-3}=y\,结果为\-2y\
12.答案\2a4}bY2}cX2}\解析先算解-2屋{3}bX2}c厂{3}=—8aX9}-{6}/{3}\,再除以\-4aX5}bX4}c\,系数\一8+-4=2\,同底数得相除\aX9}+a5}=aX4}\,\了{6}曰/⑷方⑵\,\⑶+c=cY2}\,结果为\2屋{4}丁{2}{2}\
13.答案\m=3\,\n=4\解析先化简\xXm}yXn}X2}式{2m}yY2n}\,则\xX2m}yX2n}+xX2}yX3}=xj2m-2}yX2n-3}\,因为\x32m-2},{2n-3}=xX4}y[5}\,所以\2m-2=4\,\m=3\;\2n-3=5\,\n=4\
14.答案\\frac{l}{2}a^{3}b^{5}\解析先算\\frac{l}{2}a{2}b{3}{3}=\frac{l}{Sja{6}b{9}\,再除以\\frac{l}{4}aY3}bX4}\,系数\\frac{1}{8}4-\frac{1}{4}=\frac{1}{2}\,同底数嘉相除\a16}+aX3}=aX3}\,\丁{9}小丁{4}二丁{5}\,结果为\\frac{l}{2}aX3}『{5}\
15.答案\3xX4}yX3}\解析先算\-3x算3}yX2}厂{3}=-27xX9}yX6}\,再除以\—9xX5}yX3}\,系数\-27+-9系3\,同底数嘉相除\xX9}+xX5}=xY4}\,\yX6—3}寸⑶\,结果为\3xY4}yY3}\
16.答案\4a答5}bX2}\解析先算\2aX2}bX4}=16£{8}bX4}\,再除以\4aX3b{2}\,系数\16+4=4\,同底数氟相除\a[8}+aX3}=£{5}\,\-{4}+/{2}=/{2}\,结果为\4aX5}bX2}\
17.答案\\frac{125}{9}\解析\2{3m―2n}=2^{3m}+21{2n}二2八血}/{3}为2Xn}厂{2}\,把\2jm=5\,\2Xn}二3\代入得\5X3}+3X2}=125+9=\frac{125}{9}\
18.答案:\-aY4}b\解析先算\-\frac{l}{3}aX3}bX2}厂{2}=\frac{l}{9}⑹了⑷\,再除以\-\frac{l}{9}a^{2}b^{3}\,系数\\frac{1}⑼+-\frac{l}{9}=-l\,同底数嘉相除\a6}+a2}=£{4}\,\了{4}+bX3}=b\,结果为-小{4}b\
19.答案\-\frac{5}{2}x^{3}y\解析先算\5xX2}y厂{3}二125xX6}yY3}\,再除以\-10x3}yX2}\,系数\125-10=-\frac⑸⑵\,同底数嘉相除・\xX6}+xX3}=xX3}\,\/{3}+yY2}=y\,结果为-\frac{5}{2}x~{3}y\
20.答案\-8aj4}b\解析先算解-4aX3}{2},2}=16al6}2{4}\,再除以\-2a^{2}bj3}\,系数\16+-2=-8\,同底数氟相除\aX6}+aX2}=a4}\,\—lf{3}=b\,结果为\-8a^{4}b\o。
个人认证
优秀文档
获得点赞 0