还剩13页未读,继续阅读
本资源只提供10页预览,全部文档请下载后查看!喜欢就下载吧,查找使用更方便
文本内容:
目录摘要2任务及题目要求12原理介绍23节点导纳矩阵
2.13牛顿-拉夫逊法
2.24牛顿-拉夫逊法基本原理
2.
2.14牛顿一拉夫逊法潮流求解过程介绍
2.
2.26分隔算311结果分析415总结516参考资料17唱+纥/..-G居号二02-19一2G/j-BJj-G e-BJi j=iii i\Be—Gf二蟠二lJ j2-20I0dfj Gijfj+Bijej^+Bnei~GJ j=IJeiBe—G.f.必2二口lJ g2-21号X j=iGijfj+Bijej^+Biiei~Giifi、j04L2-22一汽—lJ%ZG Bijfj+Gnei+Bnfi U=0jwi,dAU\.r03==dAU\0〃dq1一267=z=2-23~^f~一1-2/A3分析计算根据给定的运行条件,确定图中所示电力系统潮流计算时各节点的类型和i.待求量根据图中可以看出各节点的类型和待求量分别为:节点1PQ节点、待求量U,0节点2PP节点待求量Q,0节点3平衡节点待求量P,Q求节点导纳矩阵
2.Y%=%+%=1・25-155%二>23+如=1・55-/
6.5与=兀=-
0.5+/3^=^=-
0.8+744=几二一
0.75+j25所以节点导纳矩阵为
1.25-75,5—
0.5+J3—
0.75+j
2.5—
0.5+j
31.3—J7-
0.8+j4-
0.75+j25•潮流方程或功率方程的表达式3因为对n个节点的网络,电力系统的潮流方程一般形式是:n i=l,2,…,n=Z%LJ=1其中Pi=P-Qi=Q-Qui,即PQ分Gi PIT,Gi别为节点的有功功率无功功率所以代入得潮流方程:2-71=
1.25-j
5.5•U/g+
0.5-j3•1Z^+O.75-J
2.51Z0°25组65—jq=
0.5-j3•U/g+L3-j7•l/+
0.8-J4-1Z0°03一名=
0.75-J
2.5U/5]+
0.8-J4•1Z5+
1.55-21ZO°j
6.5•1Z00右2=%+歹23=1・3-
774.用牛顿-拉夫逊法计算潮流时,给出修正方程和迭代收敛条件修正方程1计算、节点的不平衡量和12AQj AV,33[一四/))+工(崂6/))+%田)37=137=1-IAQ程处坪空也p4/⑻)-4)z(G1)+%或)_7=17=1_()=-l-B+B+B=-1-O=-1u1213△v;⑼=|V2s『-|v
(0)|2=0节点是平衡节点,其电压是给定的,故不参加迭代3Y=6+”根据给定的容许误差£=按收敛判据叫),进行校验,以上10-5,max|M A0AP*}£节点、的不平衡量都未满足收敛条件,于是继续以下计算12修正方程式为()AW=-JAV n=3△W=[AR AQAP12AVQT△V=|A,凶Ae AfJ20Aq0M中然de dex2*SAQ]de a坐de第Mg12J=巡SAde de%l25AK2必《SAK25AK2乙乙明de de12以上雅可比矩阵中的各元素值是通过求偏导数获得的,对节点来说,和,,是J PQP”给定的,因而可以写出,(()P=PjeE GeBj Z GJ j+B=°△「厂/忠jwi j0(〃)(,)Q-f ZG ej-Bj+e.X G,+Be=0△,=lsj0jd)对节点来说,给定量是尸公和修,因此可以列出PV J(P=Pl eZGe-Bj/,ZGJ,+B△K产2jei△/、片—(/+/)=0当时,雅可比矩阵中非对角元素为Jwi=—Ge+B..fSAq lJ11/123=Be.GJ必fj al1tJ1dAU2dAU2八叱*==0当/=,时,雅可比矩阵中对角元素为:二一工G岛一4/一G e-BJii i0°i7=1〃号吓与力+为号—GJ+B Rj=i竿=£G/j+BQ-GJ+B R0qy=i华=工GM—Bjj+Gw+纥/cJj;/U_——26dej0Aq2二一2/与r代入数值后的修正方程为-
1.25-
5.
50.5-
5.
51.
2530.53-
1.300-2求解修正方程得-
0.2547-
0.36110-
0.1015
(2)收敛条件,⑴=,⑻+Aefo)=1-
0.2547=
0.7453力⑴=/『)+§*=0—
0.3611=—
0.3611或=印)+=1—0=1=/
(0)+A/
(0)=0-0-1015=-
0.101522一轮迭代结束,根据收敛条件收敛判据△匕2}£,若等式成立,结果收敛,迭代结束,计算平衡节点的功率和线路潮流计算,否则继续计算雅可比矩阵,解修正方程,直到满足收敛判据4结果分析给定节点电压初值*==即=i.o J⑻=度=/0=o,经过四次笔算迭代过程后,得到节点3电压和不平衡功率的变化情况分别于表
4.1和表
4.2所示取£=10一5节点电压迭代计数k=6+力;丘2=e+jf自3=%+.讯
2210.7453-jO.36111-jO.
1015120.4131-jO.
35100.9901-jO.
1479131.2973-jO.
37971.0083-jO.
0185140.8217-J
0.
36440.9986-J
0.08801表迭代过程中节点电压变化情况
4.1节点不平衡量迭代计数kAQ1\P AK220-2-
10.501-
0.1482-
0.9769-
0.0726-
0.01032-
0.0902-
0.6071-
0.0480-
0.00223-
0.6272-
4.3251-
0.3610-
0.01714-
0.1816-
1.2510-
0.1042-
0.0049表迭代过程中节点不平衡量变化情况
4.2结果值与我的小组同学基本一样,也在预期之内得到了基本一致的结果并且确定牛顿法具有很好的二次收敛性,是求解多元非线性方程的正确算法5总结这次的电力系统分析课程设计让我对平时所学的专业知识有了更深刻更具体的了解,明白了理论知识必须与实践相结合才能更好的发挥作用在不停的翻书上网查资料的过程中,我积累了大量的导纳矩阵和潮流计算以及电力系统的知识,全面透彻的了解了相关知识的应用使自己的知识更加牢固,并且有了更深的理解通过这次毕业设计,我才明白学习是一个长期积累的过程,在以后的工作、生活中都应该不断的学习,努力提高自己的知识和综合素质总之,万事开头难,知识必须通过应用才能实现其价值!有些东西以为学会了,但真正到用的时候才发现是两回事,所以我认为只有到真正会用的时候才是真的学会了参考资料何仰赞温增银.电力系统分析(第三版).华中科技大学出版社
[1]吴国炎.电力系统分析.浙江大学出版社
[2]华智明岳湖山.电力系统稳态计算.重庆大学出版社
[3]节点导纳矩阵及潮流计算摘要电力网的运行状态可用节点方程或回路方程来描述节点导纳矩阵是以系统元件的等值导纳为基础所建立的、描述电力网络各节点电压和注入电流之间关系的线性方程潮流计算是电力系统分析中的一种最基本的计算,它的任务是对给定的运行条件确定系统的运行状态,如各母线上的电压(幅值及相角)、网络中的功率分布及功率损耗等本文就节点导纳矩阵和潮流进行分析和计算1任务及题目要求题目初始条件:如图所示电网其元件导纳(数为y/
0.5j3,k
0.8%%3=°・75-j
2.5任务及要求色据给定的运行条件图所示电力系统潮流计算时M2各节点的类型和猜求餐、//12)求节点导纳矩阵丫;\/2给出潮流方程或功率方程的表达式;3当用牛顿-拉夫逊法计算潮流时,给出修正方程和迭代收敛条件42原理介绍节点导纳矩阵
2.1节点导纳矩阵既可根据自导纳和互导纳的定义直接求取,也可根据电路知识中找出改网络的关联矩阵,在节点电压方程的矩阵形式进行求解本章节我们主要讨论的是直接求解导纳矩阵根据节点电压方程章节我们知道,在利用电子数字计算机计算电力系统运行情况时,多采用IYV形式的节点方程式其中阶数等于电力网络的节点数从而可以得到个节点时的节点导纳矩阵方程组n十九%=、HVi+yi2V2+-11%用+^2%+・・十%〃赤=
12...2-1%Vi+%2%+••+匕而二L由此可以得到个节点导纳矩阵n它反映了网络的参数及接线情况,因此导纳矩阵可以看成是对电力网络电气特性的一种数学抽象由导纳短阵所了解的节点方程式是电力网络广泛应用的一种数学模型通过上面的讨论,可以看出节点导纳矩阵的有以下特点导纳矩阵的元素很容易根据网络接线图和支路参数直观地求得,形成节点导纳矩1阵的程序比较简单导纳矩阵为对称矩阵由网络的互易特性易知为=%2导纳矩阵是稀疏矩阵它的对角线元素一般不为零,但在非对角线元素中则存在3不少零元素在电力系统的接线图中,一般每个节点与平均不超过个其他节点有直接3〜4的支路连接因此,在导纳矩阵的非对角线元素中每行仅有个非零元素,其余的都是3〜4零元素,而且网络的规模越大,这种现象越显著节点导纳矩阵的形式可归纳如下导纳矩阵的阶数等于电力网络1导纳矩阵各行非对角元素中非零元素的个数等于对应节点所连得不接地支路数2导纳矩阵各对角元素,即节点的自导纳等于相应节点之间的支路导纳之和3导纳矩阵非对角元素,即节点之间的互导纳等于相应节点之间的支路导纳的负值4牛顿-拉夫逊法
2.2牛顿-拉夫逊法基本原理
2.
2.1牛顿一拉夫逊法简称牛顿法在数学上是求解非线性代数方程式的有效方法其要点是把非线性方程式的求解过程变成反复地对相应的线性方程式进行求解的过程即通常所称的逐次线性化过程对于非线性代数方程组即…户=/%=0/=1,2,•••,«2-3在待求量X的某一个初始估计值“°)附近,将上式展开成泰勒级数并略去二阶及以上的高阶项,得到如下的经线性化的方程组/(^
(0))+/(^
(0))Ax
(0)=0(2-4)上式称之为牛顿法的修正方程式由此可以求得第一次迭代的修正量Ax()=-[/(%())「(%())(2-5)将Ax⑼和2°)相加,得到变量的第一次改进值工⑴接着就从工⑴出发,重复上述计算过程因此从一定的初值工⑼出发,应用牛顿法求解的迭代格式为/
(一))Ax⑻=—/(”))(2-6)”=”)+—(*)(2-7)上两式中/(%)是函数/(%)对于变量x的一阶偏导数矩阵,即雅可比矩阵J;k为迭代次数由上式可见,牛顿法的核心便是反复形式并求解修正方程式牛顿法当初始估计值%®和方程的精确解足够接近时,收敛速度非常快,具有平方收敛特性牛顿潮流算法突出的优点是收敛速度快,若选择到一个较好的初值,算法将具有平方收敛特性,一般迭代次便可以收敛到一个非常精确的解而且其迭代次数与所计算网4~5络的规模基本无关牛顿法也具有良好的收敛可靠性,对于对以节点导纳矩阵为基础的高斯法呈病态的系统,牛顿法也能可靠收敛牛顿法所需的内存量及每次迭代所需时间均较高斯法多牛顿法的可靠收敛取决于有一个良好的启动初值如果初值选择不当,算法有可能根本不收敛或收敛到一个无法运行的节点上对于正常运行的系统,各节点电压一般均在额定值附近,偏移不会太大,并且各节点间的相位角差也不大,所以对各节点可以采用统一的电压初值(也称为平直电压),如假定Uj⑼=1邛0=0或6⑼=1/⑼=0=2-8这样一般能得到满意的结果但若系统因无功紧张或其它原因导致电压质量很差或有重载线路而节点间角差很大时,仍用上述初始电压就有可能出现问题解决这个问题的办法可以用高斯法迭代「次,以此迭代结果作为牛顿法的初值也可以先用直流法潮流求解2一次以求得一个较好的角度初值,然后转入牛顿法迭代牛顿一拉夫逊法潮流求解过程介绍
2.
2.2以下讨论的是用直角坐标形式的牛顿一拉夫逊法潮流的求解过程当采用直角坐标时,潮流问题的待求量为各节点电压的实部和虚部两个分量外/心/广—/由于平衡节点的电压向量是给定的,因此待求两共需要个方程式事实上,除了平衡节点的功率方程2n-l2n-l式在迭代过程中没有约束作用以外,其余每个节点都可以列出两个方程式对节点来说,PQpjs和0是给定的,因而可以写出2is2-9△Bj+B
①2=2,-/Z9e WG/+=o心厂•/日•/日对PV节点来说,给定量是p和厂因此可以列出J-isTis把=、=j+B2-10Ijwi△片=,/1/+/:求解过程大致可以分为以下步骤形成节点导纳矩阵;1将各节点电压设初值2U3将节点初值代入相关求式,求出修正方程式的常数项向量;4将节点电压初值代入求式,求出雅可比矩阵元素;()求解修正方程,求修正向量;5()求取节点电压的新值;6
(7)检查是否收敛,如不收敛,则以各节点电压的新值作为初值自第3步重新开始进行狭义次迭代,否则转入下一步;
(8)计算支路功率分布,PV节点无功功率和平衡节点注入功率以直角坐标系形式表示
①迭代推算式采用直角坐标时,节点电压相量及复数导纳可表示为:2-11将以上二关系式代入上式中,展开并分开实部和虚部;假定系统中的第…,1,2,m号为节点,第…,为节点,根据节点性质的不同,得到如下迭P—Q m+l,m+2,nT P—V代推算式
(1)于PQ节点B-e2岛-BQ-f£GJj+BQ7=1J=12-12△Qi=Q「胶L G岛-B/j+e/gjfj+BQj=l7=1⑵对于节点PVW=S G岛—BQ—应G〃/+g巴.J=17=11=加+1/72+2,・・・,〃一12一13匕或+广A2=/21⑶对于平衡节点平衡节点只设一个,电压为已知,不参见迭代,其电压为:2-14Vn=en+Jfn
②修正方程两组迭代式中包括个方程.选定电压初值及变量修正量符号之后代入,2n-1并将其按泰勒级数展开,略去二次方程及以后各项,得到修正方程如下\W=-J\U2-
15、P\△Qi『\bP△U2-A■理叫空呼e坐叫空■•••de然的,落/+i•••组,71+1巡幽必Q必咨5AQ•••函*•••由〃闻用讥-den-\蛇\••*••**•***•…•**••*••••**幽叫〃de}生〃弱闻用阴川den-X垢必2〃必2必Q”必Q〃%de1•••,氨乱八•••由I觉T+1如如如%阳田明用此Mde怎•••篇讥组用觉用•••电I}a必u\...必0用必u\,必0用...皈八7函旗相向孤为7a••***•*****••••****•••••**咨**de电〃班用蛇\1%n+]%,L1必.必d\U\.必U2__________1de〃-m Ide.de怎觉用n-1}蛇、JWM+I其中,2-16
③雅可比矩阵各元素的算式式中,雅可比矩阵中的各元素可通过对式和进行偏导而求得,当/时,2-122-82-9雅可比矩阵中非对角元素为丝一”_G…N lJ1lJ1%GJ必K…lJ12-17必必22-------=---------=0当/=,•时,雅可比矩阵中对角元素为:二一£G滔—BQ-G©-BJz5A p〃9伉+8臼一GJ+为弓ij六嚓力GBQ_GJ+B岛7=1Gei2-18=一£为力++纥/GQq-.7=1CJj2i dej斫由式和看出,雅可比矩阵的特点2-132T8
①矩阵中各元素是节点电压的函数,在迭代过程中,这些元素随着节点电压的变化而变化;
②导纳矩阵中的某些非对角元素为零时,雅可比矩阵中对应的元素也是为零.若%=0,则必有4=0;
③雅可比矩阵不是对称矩阵;2=2,;2w s雅可比矩阵各元素的表示如下。
个人认证
优秀文档
获得点赞 0