还剩3页未读,继续阅读
文本内容:
第七单元《复数的运算》教案
7.2授课题目
7.
2.2复数的乘法授课课时1课型讲授
1.知识与技能理解复数的乘法运算法则.
2.过程与方法学标培养学生严密的推理能力和周到细致的计算能力.教目
3.情感、态度与价值观
①通过例题和练习,能够熟悉运算法则并进行解题运算提高学生的推理能力,让学生在探究的过程中感受数学的逻辑美.
②通过本节学习和运用实践,培养学生应用意识,体会数学的应用价值.教学重点复数的乘法运算法则的应用.教学重难点教学难点复数的乘法运算法则以及关于i的正指数塞的运算规律的推导及应用.教学活动学生活动设计思路
一、创设情境学生类比多项式的乘通过具体问题引问题我们已经知道复数的加法和减法运算,那么复法,并利用岸=-1,,归纳总入,引起学生的数的乘法又是怎么运算的呢?结复数乘法运算法则..认知冲突,激发若有复数Zi=a+bia,b€R,Z2=c+学生学习新知识教学过程的兴趣dic,d eR,那么如何求zi2呢?
二、自主探究通过师生活动,
1.复数的乘法法则引导学生思考,两个复数Zi=a+bi^a,b eR,培养学生逻辑推z=c+di{c dE R,2f理的能力,提高学生探究新知的类比多项式的乘法,并利用?=-1,有能力通过小组探究获得答案,z z=a+bic+di12提升合作探究的2=ac+adi+bci+bdi能力,获得学习—ac—bd+ad+bci.的信心教师从旁做为协助,帮因此,复数的乘法法则为助学生解决探究a+bic+di=ac—bd+ad+bci时遇到的困难复数的乘法运算满足交换律、结合律和分配律,即推导概括得到复数的乘法对任意复数有Zi,Z2,Z3,法则.交换律:逐二「122Z2Z2结合律z z^3=zlZ2Z3-123分配律ZiZ+Z=Z1Z2+Z1Z3-23对于复数Z,定义它的乘方N1=z・z…・z根据复数乘法的运算律,实数的正整数指数嘉的运算法则对复数也成立,即对于复数和正整数?Z,Zi,z2n,n,有m nm+n22=2m nmnz=zfm mnZiZ=Zi z.22对于i有如下运算规律i0==i,=l,i2=3根据复数乘法的运算律,—1,i=-i,•••推导可得关于i的正指数一般地,对于任意自然数n,有幕的运算规律4n4n+14n+2i=l i=i i=—1,im+3=—tf n
2.例题分析学生积极思考,认真听讲,积极回答问题例1计算2-04+3f.解2-i4+3i例1启发学生利用复数乘法运算2=2x4-4xi+2x3i-3f法则完成例题.=8—4i+6i—3日=8+21+3=ll+2i例2灵活运用复例2计算12-i4数的正整数指数22l+03+4i.幕的运算法则,解1解12-i4=[2-02]2并结合复数乘法2=4—4i—l运算法则进行计2=3-4Q算2=9-24i+16i=9-24i-16=-7-24i21+023+4Q=1+2i+声3+49=l+2i-l3+4i・=2i3+4i2=6i+8i从例3可以知道,若讶互z,为共加复数,例计算315+625—6等于复数(或z2-2+70-2-7Q解15+605-60z)的模的平口=\z\=25+30—30—362=25-36/=
61.2-2+70-2-70=4—142+147-49*=4—49步通过练习,及学生独立完成,分组时了解学生交流
三、巩练习学习情况练习计算⑴产尸
1728.解1产7=〃X4+I=i284x72i=i=练习2计算3+4i—1+2解3+4i—l+2i=-3—4i+6i+8/=-3+2i—8=-ll+2i练习3计算一l+2i—1—2i.。
个人认证
优秀文档
获得点赞 0