还剩3页未读,继续阅读
文本内容:
北师大中职数学《指数函数与对数函数》单元教学设计第课时2授课题目
4.
1.2实数指数幕授课类型新授课建议学时1学时函数主线1____________单元知识概第四单元指数函数与对数函数览__________________________________________1L L1[实数指数募指数函数口对数;对数函数指数函数与对数函的实际应用学生经历从整数指数募到有理数指数累、再到实数指数累的拓展过程,把指数从有理数扩充到实数,可以从容地在实数集中进行指数幕运算,理解其运算结果仍然是一个实数.无理数指数嘉的理解是教学的一个难点,没有实际背景,中职阶段无法进行严格的证明,教学中引导学生利用计算器计算几个具体的无理内容分析数指数幕,知道任何正数的实数指数都是确定的实数即可,在学习指数事及其运算性质的基础上,再学习对数及其运算性质.这样安排不仅符合学生的认知规律,而且也符合数学知识发生发展的内在逻辑.更为重要的是,这种推广使得指数函数、对数函数在定义域中都是连续函数,为描述问题、研究问题带来极大方便,一言以蔽之,解决了运算和连续.
1.能理解实数指数幕是有理数指数幕的进一步扩充,初步认识实数指数幕的意义.知识目标
2.类比有理数指数幕的运算性质,运用实数指数幕的运算性质进行化简和求值.
1.经历从整数指数嘉到有理数指数累再到实数指数累的拓展过程,提升观察分析、抽象类教学目标能力目标比的能力.
2.运用实数指数曷的运算性质进行化简和求值过程,发展数学运算核心素养.类比数系的扩充规律完成指数累运算的扩充,体会数学转化的思想和知识之间的有机联系,素质目标感受数学的整体性.重点实数指数累的运算性质及应用.教学重难点难点无理数指数辱的意义.教法发现式教学教学方法学法类比学习法教学资源用PPT展示情乐、知识点、例遂、<1意.新知识的发现是因为面临的问题以原有的知识得不到解决所引发出来的思考,通过实数指数基的学习,使课程思政学生认清基本概念的来龙去脉,体会数学知识发展的逻辑合理性、严谨性,加深对人类认识事物的一般规律的理解和认识,做一个具备严谨科学态度的人.教学过程【课前知识储备】.有理数指数幕的运算,根式与分数指数累的互化.课前准备【学生知识储备检测】见附录L设计意图、课中教学环教学内容教师活动学生活动媒体资源等节【复习旧知,列举实例】【发布任务】【完成任务】默回顾上节课
1.默写根式与分数指数累的互化公式.发布任务,抽学生回写公式,纠正错误旧知,为新
2.有理数指数哥的运算性质记忆答,点评反馈知学习作好
3.回顾数的认识过程自然数一整数一有理数铺垫
(一)T实数复习导入(2分钟)整敢和分散[有理数实(・at(包・・・小数,7科■不・环小数;无理数vw如叫【小组合作】【发布任务】教师【完成任务】让学生养成用计算器(计算机)计算引导,小组合作
1.利用计算器进从特殊到一
1.3逅乂3遮和3V^+遍;行计算,得出结般,再从一般到特殊的果./l、6f—
2.
(271)和2e思维过程合作探究(
32.观察三组结果体会转化思
3.(2x3)福和2V3旅分钟)有什么特征.想,发展数观察以上三组结果有什么特征呢?学抽象素养.【抽象实数指数塞运算性质】【发布任务】【归纳总结】学会学习引导总结实数指数通过以上的计算,发现有理数指数累的运算性质同
1.同底数幕相乘,骞运算性质样可以适用于实数指数嘉的运算性质底数不变,指数相即当a0,b0,p,qeR时,有加.()2•幕的乘方,底数
(三)1=QP+%不变,指数相乘.
(2)QP)q=qpq;抽象概括(
23.积的乘方,等于
(3)(・b)P=aP・〃.Q分钟)把积的每一个因注意运算性质成立的条件是每个实数指数幕都有式分别乘方,再把意义.所得的幕相乘.【发布任务】【例题讲解】【完成任务】通过学生对
1.PPT展示学习例1计算
1.学生对教师提三个运算公任务,提出问题,引出的问题积极思式再认识,1116^—3+A/2—1;导学生思考解答考,由学生代表作再熟悉.体
2.教师带领学生出回答会公式的正1153
(四)示范讲2a~3b2s x小A+a3b3g;对例题进行解答,注
2.体会公式的用、逆用、解(23分钟)i意书写的规范具体应用,进一步变形用.培解116^—V2—13+理解记忆公式养学生数学强调对第
(1)小运算素养.i1131F题,我们需要将某原式-244—-+13-些底数变化为_4xi Z1\3X4,19-2一⑴+1=2-3+1指数幕的形式,以=0方便利用实属指数累的运算法则进行-1532a-3b55x a2s4-a3/735计算或者化简.「353原式Eg产ga2x*dxg反x司3,291二万例2化简式中字母均为正实数1V2-V8-V64;2Va3b_3x Mcr2b2x Vab
5.引导学生运用根式分析两个小题我们首先需要将根式转化为分数指与分数指数幕的互数幕,然后再化简运算.化,进一步加深理解⑴V2-V8-V64解分数指数幕的意ill义原式=
22.23^-268136=22-24-28=42y/a3b-3x Var2b2x Vab5i ii原式二3人_3A XQ_2b2A Xa/563_3_2215=«2b-2X a-3b3X«6/7632,13,2,5-a例3计•算20+21+22+23+……2%x eN分析原代数式中每一项都是前面一项的2倍除第1项外,可考虑将该代数式中的每项乘2后再与原代数式相减.解令S=2+2]+22+23+……2X将⑴式两边同时乘以2,得到2s+22+23+……2%+2%+I用⑵式减去⑴式可得25—5=21+22+23+……2%+2%+i-2°+21+22+23+2%即S=2X+1—1,所以,20+21+22+23+……2X=2X+1-
1.【对照练习】【发布任务】【完成任务】学巩固实数指
1.计算.教师巡视指导,抽取生独立完成,积极数嘉的运算2]学生讲解思路,点发言性质,培养1164-
0.001~3;评给予学生肯定评学生的语言价.表达能力23^-iV3+i.五课堂练3V3x V9x V
27.习12分钟
2.化简式中字母均为正实数.11111tt2+/72成―应;21152加匕之下x2一3排4;33x\[a+7a3b【学习回顾】
1.无理指数幕的意义.教师让学生通过学梳理知识并归纳学会学习,一般地,无理数指数累QP a0,P是无理数是一习后归纳总结总结培养归纳概个确定的实数.括的能力
2.实数指数幕的运算性质当a0,b0,p,q€R时,有1QP・qq=aP+”2gpq=Qpq;六课堂小3a・bP=aP,bP..结3分钟
3.实数指数累运算注意事项1优先计算括号内的多项式,依据实数指数幕运算性质可先化简计算,再进行加减乘除四则运算.2通常会把根式转化成分数指数累的形式,负指数幕化为正指数塞的倒数.3底数是小数,可化成分数;底数是带分数,可化成假分数,都可转化成或化归为褰的形式后,运用实数指数基运算性质计算教材P121水平二1,2分层练习,选做题教材P151单元检测第4题.满足不同层布置作业次学生实际需求简明扼要,
4.2实数指数幕的运算突出重点
1.实数指数幕的运算性质例1例31例2练习板书设计查看国家中小学智慧教育平台高一数学《指数累运算》.课后延展https://basic.smartedu.cn/syncClassroom/classActivityactivityId=7a085275-7dl7-4600-affe-9fb3b5d4a2ef反思诊改教学反思附录1:学生知识储备检测题
1.求下列各式的值
(1)((-8)3
(2)TcW
(3)#(3-)
(4)«a—b)
2442.化简
(1)a2•
(2)附录2知识检测题
1.填空.当〃、4为有实数时,有•相=_____________;£=_________;(4〃)=______;(abY=___________aq)(答案,;—=ap-q;(/)=/;(abY=al^bp)aq v
72.填空(、/^)4=.计算4
①+】x22-2夜的结果是.答案〃
1627、
0.
510.027户+2-9J227Y3角翠(
0.027户+
1253.计算下列各式(式中字母都是正数):2j_j_522凉庐—6〃唁+―3〃财;2££5解原式=[2x―6+―3]届+57户+37=4刈=4〃./7y3__________|=
0.
09.2-=\/a0272+-Jl9J。
个人认证
优秀文档
获得点赞 0