还剩14页未读,继续阅读
本资源只提供10页预览,全部文档请下载后查看!喜欢就下载吧,查找使用更方便
文本内容:
年淮南市高一第二次月考卷2023-2024教学试题测试时间120分钟满分150分试卷范围必修一第
一、
二、三章一.单项选择题(本题共8小题,每题5分,共40分).集合,产},则〃1”={x y|2x-N={^y\x+y-3=0}cN=.B.{2-1}C.{1,2}D.{192}【答案】C【解析】2x-y=0【分析解方程组I2x-y=0【详解】联立=’解得%+k3c Z结合交集的定义可得结果・X+y—3=0故选C.5A.[0,-]2C.[-5,5]B.[-1,41D.[-3,7]已知函数()定义域是[]则寸()的定义域是(
2.x+1-2,3,y2x-l【答案】A【解析】【分析】根据抽象函数的定义域求法,首先求出—再由—解不等式即可.lK2x—14,【详解】函数
(九)定义域是[]则一+1-2,3,lx+l4,所以—解得l42x—144,2所以函数的定义域为[0,2故选A【点睛】本题考查了抽象函数的定义域求法,考查了基本运算求解能力,属于基础题.A.ab—\C.a\b D.a2b2已知〃、下列条件中,使人成立的必要条件是()
3.ZeR,【答案】A【解析】a2a+\a\22+l5解得由
①②可知,满足的实数的取值范围是{〃|W-或}CcB a11W
2.【点睛】本题主要考查集合的交并运算,考查了集合的包含关系,属于基础题.函数的解析式
18.已知是二次函数,且求1/x+l+/x—l=2f—4X+4,/X.已知求函数〃的解析式.22/x—/d=3x,x x3若函数/x是奇函数,gx是偶函数,且其定义域均为{X|X£R,XW±1}.若求的解析式./X+gX=-L,Ax,gxx-\【答案】21fx=x-2x+\2/%-2x+—xx1⑶厂一/x=—--X^±l,gx=—--x^±l1-1【解析】【分析】设/幻=所+j利用待定系数法求解析式即可.12+根据题意,无用代替列方程组求解解析式即可.2L X利用奇偶函数的性质列方程组求解解析式即可.3【小问详解】1设/x-ax2+bx+c,则/%+1+/X-1=Q X+12+bx+l+c+ax-l2+/%-l+c=2x2-4x+4,整理得12,lax+2bx+2a+2c=2x-4x+4比较上述等式两边对应项的系数,2a=2a—\可得[〃,解得{〃=—2=—42,+22c=4c=lX.K故/X=X2_2X+L【小问详解】2二
①,用,代替,2/x f=3x x X X13得一—/%=—
②,2/x x
①②得,x2+11331二,即%=得/%4/%-2/-+2/--/%=6x+36%+—,=2x+-.X X X X X故/x=2x+.X【小问详解】3/x是奇函数,.・・/一工=一/食,是偶函数,g-x=gx,・・・,得―/%+fx+gx=-^—,fT+gT=—gx=_,x-\-X-1-X-1fx+gx=^-进而列方程组,一,一---------/x+gx=7I-x-\两式相加可得,即」一;2gx=—+gx=x w±1厂一x-1-x-11x-1九112x两式相减可得--------------------=-一,即一27%=/x=-x w±
1.x-\-x-\x-1x-1x1综上所述,/X=—--x^±l,gx=-―-JC^±
1.厂-厂一]112已知正数满足且一+一的最小值为左.
19.x,y x+2y=3,x y求匕1222b c a若为正数,且证明2m b,a+Z+c=h———+32k.a b c++【答案】;证明见解析.132【解析】【分析】[o1A11o----------------整体代入可得—,由基本不等式可得;1I—=——I—x+2y=-5H——Hx Vy3x y由得〃+再利用基本不等式直接可以得证.21Z+c=3,、if2y+2x【详解】1正数羽乃且x+2y=3,所以—I—=—x+2y.5+x y3又因为,所以生+生包•生当且仅当时取等号,x0,y22J=4,x=y=l x y\x y八「以if2y1z--------故;-5H1N—5+4=3,2=3jL=2b
①,当且仅当V a2证明由1得a+Z+c=3,因为Q,b,v时取等号,3xyJ3a=Z同理可得
②,当且仅当时取等号,J+Z722c c=Z b2当且仅当时取等号,—+c2a®,c=i c222〃b222ca
①+
②+
③得幺+J+£L+o+匕+C=幺+J+幺+322Q+Z+C=6=2Z,当且仅当〃=b=c=l a bc a bc时取等号.【点睛】结论点睛利用均值不等式求最值时要灵活运用以下两个公式
①当且仅当时取等号;
②当且仅当时取等号.解题时要注意公式的适a=b a,b£R+,a+b2y[^b a=b用条件、等号成立的条件,同时求最值时注意的妙用“1已知函数〃%满足〃当时,且/⑴
20./%+y=/x+y—x0/xl,=
2.求〃的值,并判断了%的单调性;10J—12当x4l,2]时,不等式/以2_3X+〃X I恒成立,求实数a的取值范围.【答案】⑴⑼,;在尺上为增函数;⑵/=1/—1=0/X a-.【解析】【分析】利用赋值法求出的值,利用函数的单调性定义判断了%的单调性即可;利用已1/O,/—12知等式把不等式转化为了
21.“x=7+厂1⑴求的值;b证明函数在区间上是减函数;2/U1,+oo解关于的不等式3x+N+/—1+2x—
40.3【答案】见解析;18=0;23-00,-【解析】【分析】根据/=求得力的值;10,由⑴可得〃一再利用函数的单调性的定义证明函数在区间,上是减函数;2x=/x1+81I X⑶由题意可得了1+f〉/£—2X+4,再根据函数/x在区间1,+8上是减函数,可得1+%2%2_2%+4,由此求得的范围.XX+/【详解”⑴•.・函数/⑴二中为定义在”上的奇函数,经验证〃.\fO=Z=O.符合题意;=0由可得^耳,下面证明函数在区间上是减函数.21/x=—x1,+oo1H JC证明设工玉,则有人-/-急二霏缶瑞匚哈程答2163,王一々一%々10引1+1+4可得〉x^1,l+X0,1+X20,%!-x0,i-XX022x2即/内/々・•・函数/X在区间1,+oo上是减函数.由不等式/于31+f+―£+2x—40可得任—工之],2/1+12/2%+4,1+2-2x4-41x再根据函数在区间上是减函数,可得1,+oo1+PVN—2x+4,33解得%-,故不等式的解集为-8,—.22解关于的不等式
22.x cue-a+lx+l
0.若解上述关于的不等式;14=3,X或x\x—X1【答案】13若解上述关于的不等式.2acR,x答案见详解2【解析】【分析】将代入不等式,然后求解即可;14=3把;〃化简得,公—,然后分四种情形
①二
②〉
③2G2—+1%+1X—1140,L l,
④最后逐个进行讨论并求解即可.-1,L=l,a a【小问详解】1由=则,3,—4x+10所以(()解得〉或x—D3x—10,x l,故不等式的解为{%或}I%;X1【小问详解】2把改2一(Q+1)X+10化简得,(X-1)(OV-1)0,
①当〃时,(),不等式的解为{};=0—X—1x|xl
②当〉即^—即时,不等式的解为或L l,-0,Ovavl xla a[ci1Q—1
③当一即-------即々或〃1,0,10,a a当时,不等式的解为|尤|尤/或%11,当时,不等式的解为0
④当即时;()2解得{且}1=1,4=1x-l o,x|X£R XW1,综上所述,当寸,不等式的解为〈光〈“;00当时;不等式的解为{};4=0x|xl当时,不等式的解为{%|犬或%;0al11当々=时,不等式的解为{且};1x|X£R XW1【分析】利用必要条件的定义,结合不等式的性质得出人成立的必要条件.【详解】对于选项,当,〃时,由不等式的性质得〃人人一可得出人-A1,1,则是心〃的必要条件;a-1对于选项,取匕则所以,B=2,=
1.5,aZ+l,a a b+1,则不是的必要条件;ab+l对于、选项,当人时,同瓦22则同〉网、力〉都不是的必要条件.C Da0a b,故选A.【点睛】本题考查必要条件的寻找,解题时要充分利用必要条件的定义来寻找,考查推理能力,属于基础题.,若函数|是上的单调函数,则的取值范围4/x=2c R°4(()A.C.0,1]D.0,1\x-2ax.,x1【答案】B【解析】【分析】根据的开口方向,确定分段函数/⑺在尺上的单调递增,再根据分段函数在上y=V—2R的单调所要满足的条件列出不等关系,求出的取值范围.【详解】因为分段函数在欠上的单调函数,由于犬开口向上,故在上单调递增,故Ax y=V—2〉40分段函数/幻在上的单调递增,所以要满足解得R-^1,223〃—1W1—2故选B已知正数满足则最小值等于
5.a—lb—1=1,a+4bA4B.4V2C.8D.9【答案】D【解析】进而得〃〃结合基本不等式即=1,4+4=4+4-+-,\a bJ【分析】整理得出1=1可.【详解】因为-a—11=1,所以〃ab-a-=0,所以,+=1,ab\1A4/7a/—所以〃a+4=a+4/-+-=1+4+—+-5+24=9,b ab当且仅当竺=,,即时等式成立,a=2Z=3ab故选D.关于的不等式〃的解集为则关
6.x N+/x+c0-3,1,于%的不等式〃的解集为cN+x+a0C.D.-oo,-l|J—9+ooA.【答案】C【解析】【分析】〃〃一匕+0,93a0,=即【详解】因为不等式法的解集为所以〈0,c*++c0G3,1,b=27,不等式c^+hx+a ca+/7+c=0,=-3a由题意,且是〃/+云的两根,进一步找到的关系,带入原不等式化简解不等式即可.avO-3,1+°=00等价于3X2-2X-10,解得——或xX
1.3故选C若函数/%=/—在区间刈上的值域为刀,则根一〃的取值范围是
7.4x—3[2[—7,A.[1,5]B.[2,7]C.[3,6]D.[4,7【答案】C【解析】【分析】根据二次函数的函数图像与性质,结合最值解决问题即可.【详解】因为/x=12—4x—3,所以/⑵=—〃7,/—1=5=
2.因为在区间[九,]上的值域为[]所以当〃=一根或〃根=时,fM m-7,2,1,=2=2,5根一〃取得最小值;3当〃=一时,加一〃取得最大值1,772=
56.故根一〃的取值范围是[]3,
6.故选C.【点睛】二次函数、二次方程与二次不等式统称“三个二次它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从
①开口方向;
②对称轴位置;
③判别式;
④端点函数值符号四个方面分析.定义在上的奇函数/在上单调递增,且则关于的不等式的解集为
8.R0,+8/—1=0,x MX%0A-1,010,1B.f-150,11,01,+C.-oc,-lDl,+oo D.-D OO【答案】A【解析】【分析】首先由为上的奇函数,在上单调递增和得出,/在上单调递R0,+8/—1=—8,0增,且⑴画出大致图像,分类讨论的取值,即得出不等式的解集./0=0,/=0,X【详解】因为函数是定义在上的奇函数,且在上单调递增,/X R0,+8所以/⑴在上单调递增,且—8,0/0=0,/I=0,可画出其大致图像,如图所示,因为4x0,所以当x0时,fx0,解得Ovxvl,当xvO时,/x0,解得一1XVO,当时,显然不合题意,x=O所以不等式的解集为MX%o-1,ouo,i,故选A.二.多项选择题本题共4小题,每题5分,共20分.每题有多个选项,漏选可得2分,多选,错选,不选均不得分.对于实数,下列说法正确的是9b,c若则.若则A.d60,B a/zbca bcibC.若〉0〉/,则Q/Q2D.若则---------------c—a c—b【答案】ABC【解析】【分析】利用不等式的性质,分析、推理判断;举例说明判断作答.ABC D【详解】对于两边同时除以则正确;A,ab0,Aa b对于2则秘当且仅当时取等号,正确;B,ab,c0,4222,c=0B对于因为〃〉则正确;C,0b,C3b------------------------对于取=一=一满足而‘一二一错误.D,1,2,/=—3,2——=,Dc-a2c-b故选ABC已知不等式依法〈的解集为或则下列结论正确的是
10.2++c o{%|xi%3},A.c0B.a+2b+4c0c.cx+a0的解集为jx|x一;D.cf〉0的解集为{%|%T或%〉一§}【答案】ABC【解析】【分析】由题意可得依云+°=的两个根为和且利用韦达定理得人=,再2+013,Q0,-4a,c=3逐个分析判断即可.【详解】因为不等式加++的解集为或工cvO{x|xl3},所以办+公+=的两个根为和且2013,Q0,h r由韦达定理得得〃=1+3=——,1x3=—,-4a,c=3a,a a因为〃所以正确,c=30,A因为所以正确,a+2Z+4c=a-8a+l2a=50,B不等式cx+〃0可化为3办+a0,因为avO,所以3X+10,得3所以的解集为所以正确,不等式〃可化为依,因为cr+a0C ex—Zzx+032+4av+q00,所以即尤+,得一尤—所以不等式法+〉的解集为(一;3d+4%+10,13%+11C%2—0%-1]卜所以错误.D故选ABC.若且〃+=则下列不等式恒成立的是()
11.4,11八B.y[ab2一A.0—«ab41111,------------D-C.-+-1ab
22.a+b-S【答案】CD【解析】【分析】结合基本不等式对选项进行分析,由此确定正确选项.f Z7,|_AV Z72-I-h1【详解】〈区」心当且仅当==时等号成立,ab‘2人贝必或I2)
13./2x—l=3x—5,4,【答案】5【解析】【分析】先利用换元法求解出原函数解析式,然后利用/%=得出/的值.4【详解】令,=则工=巴,==,—2x—1,/«=*—52222Q7因为/%=所以一解得乙乙4,5%5=4,/=
5.故答案为5【点睛】求解复合函数/依+的解析式时,只需用换元法,令用含%的式子表示出然后代入原ax+b=t,x函数解析式便可得出的解析式./x
14.已知1一〃2,2a+b4,则4〃一2b的取值范围是_____________【答案】54a-2b\Q【解析】【分析】把用和表示,然后由不等式的性质得出结论.4a—2b a-b a+b详解】令46/-2Z=ma-b+na+b=+na+{n-mb,几M+=4[n=l则c,解得・1c[n-m=-2[m=3la-b2,2a+b4,/.53a—b+a+b
10..\54«-2Z
10.故答案为546Z-2/
10.已知集合人={工|工{},求
15.2+s+2x+/+l=0}=o+b=.【答案】-1【解析】【分析】根据题意可得方程人+有两个等根,即△=,从而求出的值,进而求解即可./+3+21+1=0b,【详解】由集合A={x|/+S+2x+b+l=0}={a},则方程Y+s+匕+有两个等根,2x+1=0所以解得人=A=S+22—40+1=0,0,所以X2+S+2X+力+1=%2+2x+l=x+iy=o,解得x=_1,所以{},即A={-1}=Q=—l,故答案为-
1.
16.已知“,人为正实数,且2+匕=1,则一+幺的最小值为____________.a2b【答案】6【解析】2a4-a+2b a2b aA------------【分析】利用已知化简可得一+根据基本不等式计算即可.77=+—=—+—+4,a2b a2b\a lb、叼、“/口■42a42+2/7a2b a312b a/A【详解】由已知条件得,一+—=---------------------------+—=—+—+42J+4=6,a2ba2b\a lbN a2b人O1当且仅当二即〃=—,〃=—时取等号.=2,a2b55故答案为
6.四.解答题共6小题,17题10分,18-22题每题12题,共70分,每题要写出必要的证明,演算过程,推论或步骤设集合
17.A={%|f--60},B=[x\-43x-78}.x⑴求民;Au Ac5已知集合={工|若求实数的取值范围.24%+1},C=【答案】⑴卜|%-;或291},A B={^|3x5}2{a|a W-11a2}.【解析】【分析•】直接利用集合的交集和并集的定义即可得解;1⑵讨论和两种情况,列不等式求解即可.C=0C W0【详解】A={x\x-2^x3},B={x11x5}1A JB=[X\X—2^C3}J{x\lx5}=^x\x-2^x1}「{九A B=^x\x-2^x3}11x5}={x13x5}⑵
①当时,即解得满足C=0a2a+l,a-\,CqB
②当时,若满足则Cw0CqB,。
个人认证
优秀文档
获得点赞 0