还剩28页未读,继续阅读
本资源只提供10页预览,全部文档请下载后查看!喜欢就下载吧,查找使用更方便
文本内容:
八年级上册数学教学课件目录12有理数的运算一元一次方程包括有理数概念回顾、加减乘除法则及综合练习涵盖方程定义、解法、移项技巧及应用题34函数初步平面几何基础介绍函数概念、图像绘制和实际应用学习角的性质、三角形和四边形的特性56数据的收集与分析复习与测试掌握数据整理、表示和计算统计量的方法第一章有理数的运算有理数的概念回顾正数、负数及零的定义数轴上的位置与表示大于零的数叫正数,小于零的数叫正数位于数轴原点右侧,负数位于负数,正数、负数和零统称为有理原点左侧,零在原点位置数生活中的有理数实例温度计上的负温度、海拔高度、银行账户余额等有理数的加法法则同号相加异号相加例题讲解两个同号数相加,符号不变,绝对值相加两个异号数相加,取绝对值大的数的符号,绝计算-3+7对值相减例3+5=8异号相加,绝对值相减,取绝对值大的符号例-8+5=-3例-3+-7=-10|-3|=3,|7|=7例7+-2=57-3=4,取正号结果-3+7=4有理数的减法法则减法转化为加法减去一个数等于加上这个数的相反数例题讲解计算5--2将减法转化为加法5--2=5+2=7步骤一步骤二将减号后的数变为其相反数将减号变为加号--2=25+2步骤三按照加法法则计算5+2=7有理数的乘法法则例题讲解计算×同号得正-46两个同号数相乘,得到正数例3×5=15例-3×-5=15异号得负两个异号数相乘,得到负数例-3×5=-15例3×-5=-15乘法分配律分析一个负数乘以一个正数,结果为负数计算-4×6=-24零与任何数相乘都得零相乘的数中,负数的个数为奇数时,积为负;负数的个数为偶数时,积为正有理数的除法法则除法与乘法的关系除以一个数等于乘以这个数的倒数同号得正异号得负两个同号数相除,得到正数两个异号数相除,得到负数例12÷4=3例-12÷4=-3例-12÷-4=3例12÷-4=-3例题讲解计算÷-12-3分析两个负数相除,结果为正数计算-12÷-3=4注意任何数(除了0)除以0都是没有意义的0除以任何不为0的数,结果都是0有理数运算综合练习多步计算题计算××-23+5-41=-6+-20=-26计算÷÷-62-8-4=-3--22=-3+2=-1计算×-3[2+-5]-4=-3×-3-43=9-4=5典型错误分析与纠正错误-3×2=-6,-3×-5=-15,所以-3×[2+-5]=-6+-15=-21纠正应先计算括号内的值,得到-3×-3=9第二章一元一次方程通过本章学习,掌握一元一次方程的定义、解法及实际应用一元一次方程的定义与解法方程的含义例题讲解含有一个未知数,并且未知数的最高次数是1的方程,称为一元一次方程解方程3x+5=20一般形式ax+b=0a≠0解方程的基本步骤
1.移项,把含有未知数的项移到方程一边,常数项移到另一边
2.合并同类项,简化方程
3.系数化为1,两边同除以未知数的系数
4.检验,将解代入原方程验证移项3x=20-5计算3x=15系数化为1x=15÷3=5方程的移项与合并同类项例题讲解合并同类项方法移项技巧解方程2x-3=x+7将含有相同未知数的项合并移项2x-x=7+3等式的一边的项移到另一边,符号要变为相反数例将2x+5x合并为7x合并同类项x=10例将3x-5=7中的-5移到等号右边例将3x-x合并为2x检验2×10-3=20-3=17得3x=7+5=12x+7=10+7=17✓方程的应用题生活实例转化为方程解决实际问题的步骤设未知数列方程12根据问题,找出要求的量,用字母表示根据题目条件,建立未知数与已知量之间的等量关系解方程检验与答题34按照解方程的步骤求解将解代入原问题,检验是否符合题意,并回答问题例题讲解买书问题小明买了3本数学书和2本语文书,共花了86元已知每本数学书的价格比每本语文书贵5元,求每本数学书和每本语文书的价格设每本语文书x元,则每本数学书x+5元列方程2x+3x+5=86解得x=12所以,每本语文书12元,每本数学书17元方程的解的检验代入法验证解的正确性解出方程后,一定要将解代入原方程进行检验,以确保解的正确性检验的必要性例题演示•避免计算错误解方程5x-1=3x+7•防止遗漏条件展开5x-5=3x+7•确认解是否符合实际意义移项5x-3x=7+5合并2x=12求解x=6检验代入x=6到原方程左边56-1=5×5=25右边3×6+7=18+7=25左边=右边,解正确✓注意当原方程经过变形后,可能会产生增根或失根的情况,因此检验非常重要!一元一次方程综合练习多题型训练123基础方程分式方程应用题解方程3x+2-2=2x-1+5解方程\\frac{x}{2}+\frac{x}{3}=5\甲、乙两地相距120千米,两人同时从两地相向而行甲每小时行5千米,乙每小时行7千米,几小时后相遇?展开3x+6-2=2x-2+5通分\\frac{3x}{6}+\frac{2x}{6}=5\设t小时后相遇,则5t+7t=120化简3x+4=2x+3合并\\frac{5x}{6}=5\解得t=10移项3x-2x=3-4解得x=6合并x=-1重点难点解析解一元一次方程的关键是正确进行移项和合并同类项,同时要注意检验解的正确性,特别是在解实际问题时,要分析解的实际意义第三章函数初步通过本章学习,掌握函数的基本概念、图像绘制和实际应用函数的概念变量与函数关系函数的表示方法在一个变化过程中,如果有两个变量x和y,当x的值确定后,y的值就唯一确定,那么y就是x的函数通常把x称为自变量,y称为因变量,记作y=fx表格函数关系的本质是对应关系,即输入与输出之间的确定关系用表格列出自变量和因变量的对应值图像在坐标系中绘制点的轨迹解析式用代数式表示x与y的关系简单函数的图像绘制线性函数图像特点线性函数的一般形式为y=kx+b k≠0其中,k称为斜率,b称为截距•当k0时,函数图像是一条向右上方倾斜的直线•当k0时,函数图像是一条向右下方倾斜的直线•当b0时,直线与y轴的交点在原点上方•当b0时,直线与y轴的交点在原点下方例题讲解y=2x+1绘制步骤
1.找出y轴截距当x=0时,y=1,得到点0,
12.取几个特殊点当x=1时,y=3,得到点1,
33.当x=-1时,y=-1,得到点-1,-
14.将这些点在坐标系中标出并连成直线这样就得到了函数y=2x+1的图像函数的实际应用生活中的函数例子手机话费出租车费用水电费话费=基本月租+单价×通话时长车费=起步价+单价×里程-起步里程费用=单价×用量例题讲解手机话费计算某手机套餐月租为30元,包含100分钟通话,超出部分每分钟收费
0.2元,求通话时间与月话费之间的函数关系设通话时间为x分钟,月话费为y元
1.当x≤100时,y=
302.当x100时,y=30+
0.2x-100=
0.2x+10因此,这是一个分段函数函数的变化趋势分析增函数与减函数线性函数的特点增函数当自变量x增大时,因变量y也增大•当k0时,y=kx+b是增函数•当k0时,y=kx+b是减函数减函数当自变量x增大时,因变量y减小•当k=0时,y=b是常值函数例题讲解判断函数y=-3x+4的变化趋势解析由于系数k=-30,所以y=-3x+4是减函数,即当x增大时,y减小函数的增减性是研究函数的重要性质,它直接反映了自变量与因变量之间的变化关系函数练习题图像与解析式转换解析式求图像画出函数y=-2x+3的图像1找点0,3,1,1,-1,5连线得到一条向右下方倾斜的直线图像求解析式已知一次函数的图像过点1,4和3,0,求函数的解析式斜率k=0-4/3-1=-4/2=-22代入点1,44=-2×1+b解得b=6所以函数解析式为y=-2x+6典型题目解析某商店定价策略购买数量x件商品,总价y元满足以下关系
1.当x≤5时,每件50元
2.当5x≤10时,每件45元
3.当x10时,每件40元求购买数量与总价的函数关系,并判断是否为一次函数解这是一个分段函数,而非一次函数第四章平面几何基础通过本章学习,掌握角的基本性质、三角形和四边形的特性角的基本性质角的定义与分类角是由一个顶点和两条射线组成的图形锐角大小在0°到90°之间的角例题讲解计算角度直角已知两个互补角,其中一个角是另一个角的2倍,求这两个角的度数大小等于90°的角设其中一个角为x°,则另一个角为2x°钝角根据互补角的性质x+2x=180°大小在90°到180°之间的角解得x=60°,2x=120°平角所以这两个角分别是60°和120°大小等于180°的角角的度量角的大小用度°来度量,一个完整的圆周为360°三角形的性质三角形内角和定理任意三角形的内角和等于180°三角形分类按角分类•锐角三角形三个内角都是锐角•直角三角形有一个内角是直角•钝角三角形有一个内角是钝角按边分类•等边三角形三条边相等•等腰三角形两条边相等•不等边三角形三条边不相等例题讲解判断三角形类型一个三角形的三个内角分别为30°、60°和90°,判断这个三角形的类型解析按角分类有一个内角是直角90°,所以是直角三角形验证30°+60°+90°=180°✓四边形的分类与性质平行四边形矩形定义两组对边分别平行的四边形定义有一个内角是直角的平行四边形性质性质•对边平行且相等•四个内角都是直角•对角相等•对边平行且相等•对角线互相平分•对角线相等且互相平分菱形正方形定义四条边都相等的平行四边形定义既是矩形又是菱形的四边形性质性质•四条边相等•四条边相等•对角相等•四个内角都是直角•对角线互相垂直平分•对角线相等且互相垂直平分例题讲解已知一个四边形的四条边长分别为5cm、5cm、5cm、5cm,四个内角分别为90°、90°、90°、90°,判断这个四边形是什么解析四条边长相等,四个内角都是直角,所以这个四边形是正方形几何图形的作图技巧使用尺规作图尺规作图是指仅使用直尺和圆规作图的方法例题演示作垂直平分线
1.以线段两端点为圆心,以大于线段一半的长度为半径,画两个圆
2.连接两圆的交点,得到的直线就是垂直平分线作角平分线
1.以角的顶点为圆心,任意半径画弧,交角的两边于点A和B
2.以A和B为圆心,相同半径画两弧,交于点C
3.连接角顶点和C点,得到的射线就是角平分线作等边三角形
1.画一条线段AB作为一边
2.以A为圆心,AB为半径画弧
3.以B为圆心,AB为半径画弧,与前一弧交于点C尺规作图是平面几何中的基本技能,掌握这些基本作图方法,可以构造出各种几何图
4.连接AC和BC,得到等边三角形ABC形,解决复杂的几何问题在作图过程中,要注意作图的精确性和规范性,遵循几何作图的基本原则第五章数据的收集与分析通过本章学习,掌握数据整理、表示和计算统计量的方法数据的整理与表示频数表、条形图、折线图数据收集后,需要进行整理和表示,常用的方法有频数表将数据按类别或数值大小分组,并计算每组的频数条形图用长度不同的条形表示不同类别的频数折线图用折线表示数据随时间或顺序的变化趋势扇形图用扇形表示各部分占总体的百分比数据的平均数与中位数计算方法平均数所有数据的和除以数据的个数特点受极端值影响较大适用数据分布较均匀时中位数将数据从小到大排序后,位于中间位置的数当数据个数为奇数时,中位数为中间那个数当数据个数为偶数时,中位数为中间两个数的平均值特点不受极端值影响适用数据中有极端值时例题讲解某班10名学生的数学成绩为85,92,78,64,88,90,95,76,82,80求这组数据的平均数和中位数平均数85+92+78+64+88+90+95+76+82+80÷10=830÷10=83中位数将数据从小到大排序64,76,78,80,82,85,88,90,92,95数据个数为10(偶数),中位数为第5个和第6个数的平均值82+85÷2=
83.5课程总结与复习重点知识回顾有理数的运算一元一次方程•加减法则•方程的解法•乘除法则•移项与合并同类项•混合运算顺序•实际应用平面几何基础函数初步•角的性质•函数概念•三角形与四边形•图像绘制•作图技巧•增减性分析典型题型汇总课后练习推荐
1.有理数的四则混合运算
2.一元一次方程的解法与应用
1.教材课后习题
3.函数图像与解析式的转换
2.习题册对应章节练习
4.几何图形的性质判断
3.单元测试卷
5.数据的整理与统计量计算
4.综合应用题专项训练八年级上册数学课程涵盖了多个重要的数学概念和技能,这些知识将为后续学习打下坚实基础通过扎实的练习和理解,相信同学们能够掌握这些知识点,提高数学思维能力。
个人认证
优秀文档
获得点赞 0