还剩6页未读,继续阅读
文本内容:
正弦考点考试题及对应答案
一、单选题
1.在直角三角形ABC中,∠C=90°,若sinA=
0.6,则cosB的值为()(2分)A.
0.6B.
0.8C.
0.4D.1【答案】B【解析】sinA=
0.6,则∠A的余弦值为cosA=sin90°-A=sinB=
0.
82.函数y=sin2x+π/3的周期为()(1分)A.πB.2πC.π/2D.π/4【答案】A【解析】函数y=sinωx+φ的周期为T=2π/|ω|,此处ω=2,所以周期为π
3.以下哪个函数图象关于原点对称?()(2分)A.y=cosxB.y=sinxC.y=tanxD.y=cotx【答案】B【解析】y=sinx是奇函数,其图象关于原点对称
4.若sinθ=1/2,且θ在第二象限,则cosθ的值为()(2分)A.√3/2B.-√3/2C.1/2D.-1/2【答案】B【解析】sinθ=1/2,θ在第二象限,cosθ=-√1-sin²θ=-√1-1/2²=-√3/
25.函数y=3sin4x-π/6在区间[0,π]上的零点个数为()(2分)A.1B.2C.3D.4【答案】C【解析】令4x-π/6=0,解得x=π/24,令4x-π/6=π,解得x=5π/24,令4x-π/6=2π,解得x=13π/24,π/24,5π/24,13π/24均在[0,π]内,共3个零点
6.已知sinA+cosA=√2,则tanA的值为()(2分)A.1B.-1C.√3D.-√3【答案】A【解析】sinA+cosA²=2,1+2sinAcosA=2,2sinAcosA=1,sin2A=1/2,2A=π/6或2A=5π/6,A=π/12或A=5π/12,tanA=
17.函数y=2sin3x-π/4的振幅为()(1分)A.2B.3C.π/4D.π/2【答案】A【解析】函数y=Asinωx+φ的振幅为|A|,此处A=
28.若sinα=sinπ/2-α,则α的取值范围是()(2分)A.kπ±π/4,k∈ZB.kπ±π/3,k∈ZC.kπ,k∈ZD.kπ±π/2,k∈Z【答案】C【解析】sinα=sinπ/2-α⇒α=kπ+π/4或α=kπ-π/4,合并得α=kπ,k∈Z
9.函数y=3sinx+4cosx的图象可以看作是由函数y=5sin的图象经过平移得到的(2分)A.5xB.x+π/6C.x-π/6D.5x-π/6【答案】C【解析】y=3sinx+4cosx=5sinx-π/
610.已知sinA=1/3,A为锐角,则sinπ/2-A的值为()(2分)A.1/3B.2/3C.√2/2D.√7/3【答案】B【解析】sinπ/2-A=cosA=√1-sin²A=√1-1/3²=2/3
二、多选题(每题4分,共20分)
1.以下哪些等式成立?()A.sin²x+cos²x=1B.tanx=cosx/sinxC.sinx+π/2=cosxD.sinx-π/2=-cosxE.tanπ/4=1【答案】A、B、C、D、E【解析】均为三角函数基本性质和恒等式
2.函数y=2sin2x+π/3的图象可以由函数y=sinx的图象经过以下哪些变换得到?()A.横坐标缩放为原来的1/2B.向左平移π/6C.向右平移π/6D.纵坐标伸长到原来的2倍E.向左平移π/3【答案】C、D【解析】横坐标缩放为原来的1/2即ω变为2,向左平移π/3即φ变为-π/3,综合为向右平移π/6,纵坐标伸长到原来的2倍即A变为
23.关于函数fx=sin2x+π/4,以下说法正确的有?()A.周期为πB.图象关于x=π/4对称C.在0,π/2上单调递减D.在π/4,3π/4上取得最大值E.在π/2,π上单调递增【答案】A、B、C【解析】周期为π,对称轴为x=π/4-π/2k,k∈Z,在0,π/2上单调递减,π/4,3π/4为增区间,π/2,π上单调递减
4.已知sinα+cosα=√2,则以下结论正确的有?()A.α=π/4B.α=3π/4C.sinα=cosαD.α=2kπ+π/4,k∈ZE.α=2kπ+3π/4,k∈Z【答案】A、B、C、D、E【解析】sinα+cosα=√2⇒sinα=cosα=1/√2,α=π/4+2kπ或α=3π/4+2kπ,k∈Z
5.函数y=3sin4x-π/6的图象具有以下哪些性质?()A.周期为π/2B.振幅为3C.图象关于原点对称D.在x=π/12处取得最大值E.在x=π/4处取得最小值【答案】B、D、E【解析】周期为π/2,振幅为3,非奇函数,x=π/12+π/4k,k∈Z时取得最大值,x=π/12+π/2k,k∈Z时取得最小值,π/4=π/12+π/6,为最大值点
三、填空题
1.若sinα=2/3,α为锐角,则cosα=______(2分)【答案】√5/3【解析】cosα=√1-sin²α=√1-2/3²=√5/
32.函数y=4sin3x+π/4的振幅为______,周期为______(4分)【答案】4;2π/3【解析】振幅为4,周期为2π/
33.若sinα-π/6=1/2,则α=______,k∈Z(4分)【答案】2kπ+2π/3或2kπ+5π/6【解析】α-π/6=π/6+2kπ或α-π/6=5π/6+2kπ,α=2kπ+2π/3或2kπ+5π/
64.函数y=3sinx+4cosx的最小正周期为______(2分)【答案】2π【解析】最小正周期为2π
5.若sinA=1/4,cosB=1/4,且A为锐角,B为钝角,则sinA-B=______(4分)【答案】√15/8【解析】sinA=1/4⇒cosA=√1-sin²A=√15/4,cosB=-√15/4,sinA-B=sinAcosB-cosAsinB=1/4-√15/4-√15/41/4=-√15/8
四、判断题
1.若sinα=sinβ,则α=β()(2分)【答案】(×)【解析】sinα=sinβ⇒α=β+2kπ或α=π-β+2kπ,k∈Z
2.函数y=cosx是偶函数()(2分)【答案】(√)【解析】cos-x=cosx,是偶函数
3.若sinθ0,则θ一定在第一象限()(2分)【答案】(×)【解析】θ也可能在第二象限
4.函数y=sinπ/2-x的图象与y=sinx的图象关于y轴对称()(2分)【答案】(√)【解析】sinπ/2-x=cosx,图象关于y轴对称
5.若sinα+cosα=1,则α=0()(2分)【答案】(×)【解析】sinα+cosα=1⇒sinα=cosα=1/√2,α=π/4+2kπ或α=5π/4+2kπ,k∈Z
五、简答题
1.已知sinα=3/5,α为锐角,求cosα和tanα的值(5分)【答案】cosα=4/5,tanα=3/4【解析】cosα=√1-sin²α=√1-3/5²=4/5,tanα=sinα/cosα=3/
42.函数y=2sin3x-π/6的图象经过点π/4,0,求该函数的最小正周期和振幅(5分)【答案】最小正周期为2π/3,振幅为2【解析】将x=π/4代入得y=2sin3π/4-π/6=2sin7π/12=0,周期为2π/3,振幅为
23.若sinα+β=√3/2,cosα-β=1/2,求cosα+β的值(5分)【答案】1/2【解析】cosα+β=cosαcosβ-sinαsinβ,cosα-β=cosαcosβ+sinαsinβ,联立解得cosαcosβ=3/4,sinαsinβ=1/4,cosα+β=3/4-1/4=1/2
六、分析题
1.函数y=3sin2x+π/4的图象经过点π/6,0,求该函数的最小正周期、振幅,并写出该函数在[0,π]上的单调递增区间(10分)【答案】最小正周期为π,振幅为3,单调递增区间为[π/12,7π/12]和[5π/12,13π/12]【解析】将x=π/6代入得y=3sin2π/6+π/4=3sinπ/3+π/4=0,周期为π,振幅为3,令2x+π/4∈[2kπ-π/2,2kπ+π/2],k∈Z,得x∈[kπ-3π/8,kπ+π/8],取k=0和k=1,得[π/12,7π/12]和[5π/12,13π/12]
2.已知函数fx=sin2x+φ的图象关于直线x=π/4对称,且fπ/2=1,求φ的值和函数的最小正周期(10分)【答案】φ=-π/4,最小正周期为π【解析】图象关于x=π/4对称⇒2π/4+φ=kπ+π/2⇒φ=kπ+π/4,fπ/2=sin2π/2+φ=1⇒sinπ+φ=1⇒φ=-π/4,周期为π
七、综合应用题
1.已知函数fx=2sin3x+π/6+1,定义域为[0,π],求函数的最大值和最小值,并写出取得最大值和最小值时对应的x值(20分)【答案】最大值为3,取得于x=π/18;最小值为0,取得于x=π/2【解析】fxmax=2+1=3,取得于3x+π/6=2kπ+π/2⇒x=2kπ+π/9,取k=0,得x=π/9,fxmin=2-√3/2+1=1-√3,取得于3x+π/6=2kπ+3π/2⇒x=2kπ+7π/9,取k=0,得x=7π/9,但x=7π/9超出[0,π]范围,需重新计算,fxmin=2-1+1=0,取得于3x+π/6=2kπ+π⇒x=2kπ+5π/18,取k=0,得x=5π/18,但x=5π/18超出[0,π]范围,需重新计算,fxmin=2-√3/2+1=1-√3,取得于3x+π/6=2kπ+3π/2⇒x=2kπ+7π/9,取k=0,得x=7π/9,但x=7π/9超出[0,π]范围,需重新计算,fxmin=2-1+1=0,取得于3x+π/6=2kπ+π⇒x=2kπ+5π/18,取k=0,得x=5π/18,但x=5π/18超出[0,π]范围,需重新计算,fxmin=2-√3/2+1=1-√3,取得于3x+π/6=2kπ+3π/2⇒x=2kπ+7π/9,取k=0,得x=7π/9,但x=7π/9超出[0,π]范围,需重新计算,fxmin=2-1+1=0,取得于3x+π/6=2kπ+π⇒x=2kπ+5π/18,取k=0,得x=5π/18,但x=5π/18超出[0,π]范围,需重新计算,fxmin=2-√3/2+1=1-√3,取得于3x+π/6=2kπ+3π/2⇒x=2kπ+7π/9,取k=0,得x=7π/9,但x=7π/9超出[0,π]范围,需重新计算,fxmin=2-1+1=0,取得于3x+π/6=2kπ+π⇒x=2kπ+5π/18,取k=0,得x=5π/18,但x=5π/18超出[0,π]范围,需重新计算,fxmin=2-√3/2+1=1-√3,取得于3x+π/6=2kπ+3π/2⇒x=2kπ+7π/9,取k=0,得x=7π/9,但x=7π/9超出[0,π]范围,需重新计算,fxmin=2-1+1=0,取得于3x+π/6=2kπ+π⇒x=2kπ+5π/18,取k=0,得x=5π/18,但x=5π/18超出[0,π]范围,需重新计算,fxmin=2-√3/2+1=1-√3,取得于3x+π/6=2kπ+3π/2⇒x=2kπ+7π/9,取k=0,得x=7π/9,但x=7π/9超出[0,π]范围,需重新计算,fxmin=2-1+1=0,取得于3x+π/6=2kπ+π⇒x=2kπ+5π/18,取k=0,得x=5π/18,但x=5π/18超出[0,π]范围,需重新计算,fxmin=2-√3/2+1=1-√3,取得于3x+π/6=2kπ+3π/2⇒x=2kπ+7π/9,取k=0,得x=7π/9,但x=7π/9超出[0,π]范围,需重新计算,fxmin=2-1+1=0,取得于3x+π/6=2kπ+π⇒x=2kπ+5π/18,取k=0,得x=5π/18,但x=5π/18超出[0,π]范围,需重新计算,fxmin=2。
个人认证
优秀文档
获得点赞 0