还剩9页未读,继续阅读
本资源只提供10页预览,全部文档请下载后查看!喜欢就下载吧,查找使用更方便
文本内容:
逻辑用语易错试题及正确答案
一、单选题
1.下列命题中,属于真命题的是()(1分)A.存在一个实数x,使得x²0B.对于任意实数x,x²≥0C.所有正数都有平方根D.无理数是无限不循环小数【答案】B【解析】任意实数的平方都大于等于0,所以是真命题
2.命题若ab,则a²b²的逆命题是()(2分)A.若a²b²,则abB.若ab,则a²=b²C.若a²=b²,则a=bD.若a²b²,则ab【答案】A【解析】逆命题是交换原命题的题设和结论
3.下列逻辑用语中,表示非p的是()(1分)A.p且qB.p或qC.非pD.p且非q【答案】C【解析】非p直接表示命题p的否定
4.命题对于任意x∈R,若x²-1=0,则x=1的否定是()(2分)A.存在x∈R,若x²-1=0,则x≠1B.存在x∈R,若x²-1≠0,则x=1C.对于任意x∈R,若x²-1≠0,则x≠1D.对于任意x∈R,若x²-1=0,则x≠1【答案】D【解析】全称命题的否定是存在性命题,且结论取反
5.下列命题中,真命题是()(1分)A.若x2,则x²4B.若x²4,则x2C.若x²=4,则x=2D.若x2,则x²4【答案】A【解析】x2时,x²一定大于
46.命题若ab,则a+cb+c的逆否命题是()(2分)A.若a+c≤b+c,则a≤bB.若a+c=b+c,则a=bC.若a+cb+c,则abD.若a≤b,则a+c≤b+c【答案】C【解析】逆否命题与原命题等价
7.下列逻辑用语中,表示p且q的是()(1分)A.非pB.非qC.p或qD.p且q【答案】D【解析】且表示同时成立
8.命题存在一个x∈N,使得x是偶数的否定是()(2分)A.不存在一个x∈N,使得x是偶数B.对于任意x∈N,x是偶数C.对于任意x∈N,x不是偶数D.存在一个x∈N,x不是偶数【答案】C【解析】存在性命题的否定是全称命题,且结论取反
9.下列命题中,假命题是()(1分)A.若x=0,则x²=0B.若x²=0,则x=0C.若x0,则x²0D.若x²0,则x0【答案】D【解析】x可以小于0,但x²仍大于
010.命题若ab,则a²b²的真假性是()(2分)A.真命题B.假命题C.有时真有时假D.无法判断【答案】C【解析】当a和b为负数时,结论不成立
二、多选题(每题4分,共20分)
1.以下哪些属于逻辑用语中的联结词?()A.且B.或C.非D.若...则...E.存在【答案】A、B、C【解析】联结词包括且、或、非,若...则...是条件联结词
2.以下命题中,属于真命题的有?()A.对于任意x∈R,若x²=1,则x=1B.存在一个x∈Z,使得x是奇数C.若x0,则x²0D.若x²0,则x≠0E.对于任意x∈R,若x²≥0【答案】B、C、D、E【解析】A是假命题,因为x也可以等于-
13.以下命题中,真命题的有?()A.若ab,则a+cb+cB.若ab,则a-cb-cC.若ab,则acbcD.若ab,则ac²bc²E.若ab,则a²b²【答案】A、B、E【解析】C和D在a和b为负数时不成立
4.以下逻辑用语中,表示非p的有?()A.¬pB.pC.非pD.p或非pE.p且非p【答案】A、C、E【解析】¬p、非p、p且非p都表示非p
5.以下命题中,真命题的有?()A.若ab,则a+cb+cB.若ab,则a-cb-cC.若ab,则acbcD.若ab,则ac²bc²E.若ab,则a²b²【答案】A、B、E【解析】C和D在a和b为负数时不成立
三、填空题
1.命题若p,则q的逆命题是______,否命题是______,逆否命题是______(4分)【答案】若q,则p;若非p,则非q;若非q,则非p
2.逻辑用语p或q为真,当且仅当______或______为真(4分)【答案】p;q
3.命题对于任意x∈R,若x²=1,则x=1的否定是______(4分)【答案】存在一个x∈R,使得x²=1且x≠
14.逻辑用语非p为真,当且仅当______为假(4分)【答案】p
5.命题存在一个x∈N,使得x是偶数的否定是______(4分)【答案】对于任意x∈N,x不是偶数
四、判断题
1.命题若ab,则a²b²是真命题()(2分)【答案】(×)【解析】当a和b为负数时,结论不成立
2.逻辑用语p且q为真,当且仅当p和q都为真()(2分)【答案】(√)
3.命题存在一个x∈R,使得x²0是假命题()(2分)【答案】(√)
4.逻辑用语非p为假,当且仅当p为假()(2分)【答案】(√)
5.命题对于任意x∈Z,若x²是偶数,则x是偶数是真命题()(2分)【答案】(√)
五、简答题(每题4分,共12分)
1.简述命题若p,则q的逆命题、否命题和逆否命题的区别【答案】逆命题交换原命题的题设和结论,即若q,则p否命题否定原命题的题设和结论,即若非p,则非q逆否命题交换原命题的题设和结论,并否定它们,即若非q,则非p逆命题和逆否命题等价,否命题和原命题等价
2.简述逻辑用语非p、p且q、p或q的含义【答案】非p表示命题p的否定,即p不成立p且q表示命题p和命题q同时成立p或q表示命题p和命题q至少有一个成立
3.简述全称命题和存在命题的区别【答案】全称命题对于任意对象x,都具有某种性质p,通常表示为对于任意x∈M,px存在命题存在至少一个对象x,具有某种性质p,通常表示为存在一个x∈M,px
六、分析题(每题10分,共20分)
1.分析命题若ab,则a²b²的真假性,并说明理由【答案】该命题是假命题因为当a和b为负数时,虽然ab成立,但a²b²不成立例如,取a=-1,b=-2,则ab成立,但a²=1,b²=4,所以a²b²不成立因此,该命题不是真命题
2.分析命题对于任意x∈R,若x²≥0,则x是实数的真假性,并说明理由【答案】该命题是真命题因为对于任意实数x,其平方x²一定大于等于0,而实数集包含所有实数,所以结论x是实数总是成立因此,该命题是真命题
七、综合应用题(每题20分,共40分)
1.设命题p存在一个x∈Z,使得x²是偶数,命题q对于任意x∈Z,若x²是偶数,则x是偶数判断命题p且q的真假性,并说明理由【答案】命题p是真命题,因为存在一个整数x,如x=2,其平方x²=4是偶数命题q也是真命题,因为对于任意整数x,若x²是偶数,则x一定是偶数因此,命题p且q是真命题,因为p和q都为真
2.设命题p对于任意x∈R,若x²=1,则x=1,命题q存在一个x∈R,使得x²0判断命题非p或q的真假性,并说明理由【答案】命题p是假命题,因为存在x=-1,使得x²=1但x≠1命题q是假命题,因为对于任意实数x,其平方x²总是大于等于0,所以不存在x使得x²0因此,命题非p或q是真命题,因为非p为真(p为假),所以整个命题为真---完整标准答案
一、单选题
1.B
2.A
3.C
4.D
5.A
6.C
7.D
8.C
9.D
10.C
二、多选题
1.A、B、C
2.B、C、D、E
3.A、B、E
4.A、C、E
5.A、B、E
三、填空题
1.若q,则p;若非p,则非q;若非q,则非p
2.p;q
3.存在一个x∈R,使得x²=1且x≠
14.p
5.对于任意x∈N,x不是偶数
四、判断题
1.(×)
2.(√)
3.(√)
4.(√)
5.(√)
五、简答题
1.简述命题若p,则q的逆命题、否命题和逆否命题的区别【答案】逆命题交换原命题的题设和结论,即若q,则p否命题否定原命题的题设和结论,即若非p,则非q逆否命题交换原命题的题设和结论,并否定它们,即若非q,则非p逆命题和逆否命题等价,否命题和原命题等价
2.简述逻辑用语非p、p且q、p或q的含义【答案】非p表示命题p的否定,即p不成立p且q表示命题p和命题q同时成立p或q表示命题p和命题q至少有一个成立
3.简述全称命题和存在命题的区别【答案】全称命题对于任意对象x,都具有某种性质p,通常表示为对于任意x∈M,px存在命题存在至少一个对象x,具有某种性质p,通常表示为存在一个x∈M,px
六、分析题
1.分析命题若ab,则a²b²的真假性,并说明理由【答案】该命题是假命题因为当a和b为负数时,虽然ab成立,但a²b²不成立例如,取a=-1,b=-2,则ab成立,但a²=1,b²=4,所以a²b²不成立因此,该命题不是真命题
2.分析命题对于任意x∈R,若x²≥0,则x是实数的真假性,并说明理由【答案】该命题是真命题因为对于任意实数x,其平方x²一定大于等于0,而实数集包含所有实数,所以结论x是实数总是成立因此,该命题是真命题
七、综合应用题
1.设命题p存在一个x∈Z,使得x²是偶数,命题q对于任意x∈Z,若x²是偶数,则x是偶数判断命题p且q的真假性,并说明理由【答案】命题p是真命题,因为存在一个整数x,如x=2,其平方x²=4是偶数命题q也是真命题,因为对于任意整数x,若x²是偶数,则x一定是偶数因此,命题p且q是真命题,因为p和q都为真
2.设命题p对于任意x∈R,若x²=1,则x=1,命题q存在一个x∈R,使得x²0判断命题非p或q的真假性,并说明理由【答案】命题p是假命题,因为存在x=-1,使得x²=1但x≠1命题q是假命题,因为对于任意实数x,其平方x²总是大于等于0,所以不存在x使得x²0因此,命题非p或q是真命题,因为非p为真(p为假),所以整个命题为真。
个人认证
优秀文档
获得点赞 0