还剩7页未读,继续阅读
文本内容:
重庆成人高考理科真题及答案解析
一、单选题(每题1分,共20分)
1.下列关于函数y=2x+1的叙述,错误的是()(1分)A.函数是增函数B.函数图象经过点0,1C.函数的反函数是y=x-1/2D.函数的解析式可以写成y=fx【答案】D【解析】y=fx是函数的通用表示法,不是具体解析式
2.若集合A={1,2,3},B={2,3,4},则A∩B等于()(1分)A.{1,2}B.{2,3}C.{3,4}D.{1,4}【答案】B【解析】A和B的共同元素为2和
33.计算√36的值是()(1分)A.6B.-6C.±6D.36【答案】A【解析】36的平方根为
64.函数y=1/x在x→0时,函数值趋近于()(1分)A.0B.1C.无穷大D.无穷小【答案】C【解析】分母趋近于0时,分数值趋近于无穷大
5.直线y=2x+3与x轴的交点坐标是()(1分)A.0,3B.3,0C.-3,0D.0,-3【答案】B【解析】令y=0,解得x=-3/2,即3,
06.若向量a=3,4,b=1,2,则a+b等于()(1分)A.4,6B.3,6C.4,8D.3,8【答案】A【解析】分量相加得到3+1,4+
27.直角三角形中,若两条直角边长分别为3和4,则斜边长是()(1分)A.5B.7C.25D.49【答案】A【解析】根据勾股定理,斜边长√3²+4²=
58.下列图形中,不是轴对称图形的是()(1分)A.等边三角形B.正方形C.圆D.等腰梯形【答案】D【解析】等腰梯形只有一条对称轴
9.计算sin30°的值是()(1分)A.1/2B.√2/2C.√3/2D.1【答案】A【解析】30°角的正弦值为1/
210.某班级有50名学生,其中男生30名,女生20名,随机抽取一名学生,抽到女生的概率是()(1分)A.1/2B.3/5C.2/5D.1/3【答案】C【解析】概率=20/50=2/
511.函数y=x²的图象是()(1分)A.直线B.抛物线C.双曲线D.圆【答案】B【解析】x²的图象是抛物线
12.下列数中,无理数是()(1分)A.1/3B.√4C.0D.√2【答案】D【解析】√2不能表示为两个整数的比
13.若三角形三个内角分别为30°、60°、90°,则该三角形是()(1分)A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形【答案】C【解析】90°角说明是直角三角形
14.函数y=2x+1的图象在y轴上的截距是()(1分)A.1B.2C.0D.-1【答案】A【解析】x=0时,y=
115.若a0,b0,则下列不等式成立的是()(1分)A.a+b0B.a-b0C.ab0D.ab0【答案】B【解析】正数减去负数一定大于
016.圆的半径为5,则圆的面积是()(1分)A.10πB.20πC.25πD.50π【答案】C【解析】面积公式为πr²=25π
17.若fx=x²-2x+1,则f2的值是()(1分)A.1B.2C.3D.4【答案】A【解析】f2=2²-22+1=
118.下列命题中,正确的是()(1分)A.两个无理数的和一定是无理数B.两个有理数的积一定是有理数C.两个无理数的积一定是无理数D.两个有理数的和一定是无理数【答案】B【解析】有理数运算结果仍为有理数
19.若向量a=1,0,b=0,1,则a+b的模长是()(1分)A.1B.√2C.√3D.2【答案】A【解析】模长√1²+0²=
120.函数y=1/x在x→∞时,函数值趋近于()(1分)A.0B.1C.无穷大D.无穷小【答案】A【解析】分母趋近于无穷大时,分数值趋近于0
二、多选题(每题4分,共20分)
1.下列函数中,在定义域内是增函数的有()(4分)A.y=xB.y=-xC.y=x²D.y=1/xE.y=√x【答案】A、E【解析】y=x和y=√x是增函数
2.以下关于三角函数的叙述正确的有()(4分)A.sin90°=1B.cos0°=0C.tan45°=1D.sin30°=√3/2E.cos60°=1/2【答案】A、B、C、E【解析】sin30°=1/2,tan45°=
13.关于数列{a_n},以下说法正确的有()(4分)A.等差数列的通项公式为a_n=a₁+n-1dB.等比数列的通项公式为a_n=a₁q^n-1C.等差数列的前n项和公式为S_n=na₁+a_n/2D.等比数列的前n项和公式为S_n=a₁1-qⁿ/1-qE.等差数列的任意三项不成等比数列【答案】A、B、C、D【解析】等差数列的任意三项可以成等比数列
4.关于直线l ax+by+c=0,以下说法正确的有()(4分)A.当a=0时,直线平行于x轴B.当b=0时,直线平行于y轴C.当c=0时,直线经过原点D.当a=b时,直线与x轴夹角为45°E.当a≠0且b≠0时,直线一定与坐标轴相交【答案】A、B、C、D【解析】ax+by+c=0中,当c≠0时,直线与坐标轴不一定相交
5.关于圆锥,以下说法正确的有()(4分)A.圆锥的侧面展开图是圆形B.圆锥的侧面展开图是扇形C.圆锥的体积公式为V=1/3πr²hD.圆锥的侧面积公式为S=πrlE.圆锥的底面半径与母线长一定构成直角三角形【答案】B、C、D、E【解析】圆锥侧面展开图是扇形
三、填空题(每题4分,共32分)
1.若fx=2x+1,则f0+f1的值是______(4分)【答案】3【解析】f0=1,f1=3,和为
42.函数y=|x|的图象是______(4分)【答案】V形【解析】绝对值函数图象为V形
3.计算sin60°cos30°的值是______(4分)【答案】3/4【解析】√3/2√3/2=3/
44.若集合A={1,2,3},B={2,3,4},则A∪B的元素个数是______(4分)【答案】5【解析】{1,2,3,4}共4个元素
5.函数y=2x²-4x+1的顶点坐标是______(4分)【答案】1,-1【解析】顶点公式x=-b/2a=1,代入得y=-
16.计算√50+√8的值是______(4分)【答案】6√2【解析】5√2+2√2=7√
27.若向量a=2,3,b=1,-1,则a·b的值是______(4分)【答案】-1【解析】21+3-1=-
18.某工厂生产零件,合格率为95%,随机抽取3个零件,全部合格的概率是______(4分)【答案】
0.8574【解析】
0.95³≈
0.8574
四、判断题(每题2分,共10分)
1.若ab,则a²b²()(2分)【答案】(×)【解析】如a=-2,b=-1,则-2-1但
412.函数y=1/x在定义域内是奇函数()(2分)【答案】(√)【解析】f-x=-fx成立
3.所有等腰三角形都是相似三角形()(2分)【答案】(×)【解析】只有等边三角形才相似
4.若A⊆B,则∩A∩B()(2分)【答案】(×)【解析】交集运算性质不符
5.圆的半径缩小为原来的1/2,面积也缩小为原来的1/2()(2分)【答案】(×)【解析】面积缩小为1/4
五、简答题(每题4分,共12分)
1.简述等差数列与等比数列的主要区别(4分)【答案】等差数列相邻项之差为常数d,即a_n-a_n-1=d;等比数列相邻项之比为常数q,即a_n/a_n-1=q通项公式不同,前n项和公式也不同
2.简述三角函数sinx、cosx、tanx的定义域和值域(4分)【答案】sinx定义域为R,值域为[-1,1];cosx定义域为R,值域为[-1,1];tanx定义域为x≠kπ+π/2k∈Z,值域为R
3.简述直线l ax+by+c=0与坐标轴的位置关系(4分)【答案】当c=0时,直线过原点;当a=0或b=0时,直线平行于坐标轴;当a、b均不为0时,直线与两坐标轴相交
六、分析题(每题10分,共20分)
1.已知函数fx=x²-2x+3,求函数的最小值,并说明理由(10分)【答案】函数fx=x²-2x+3可化为fx=x-1²+2由于平方项非负,最小值为2,当x=1时取得
2.已知三角形ABC中,∠A=60°,∠B=45°,BC边长为6,求AB和AC的长度(10分)【答案】∠C=180°-60°-45°=75°由正弦定理得AB=BC/sinCsinA=6/sin75°sin60°≈
5.76,AC=BC/sinCsinB=6/sin75°sin45°≈
4.39
七、综合应用题(每题25分,共50分)
1.某工厂生产某种产品,固定成本为10000元,每件产品可变成本为5元,售价为10元若销售量x件,求(25分)
(1)利润函数的表达式;(10分)
(2)销售多少件产品时,工厂开始盈利?(10分)
(3)若要实现利润1000元,需要销售多少件产品?(5分)【答案】
(1)利润函数Px=10x-10000+5x=5x-10000
(2)令Px0,解得x2000,即销售超过2000件时盈利
(3)令Px=1000,解得x=2200,即销售2200件时利润为1000元
2.某班级组织一次数学竞赛,比赛成绩近似服从正态分布Nμ,σ²,已知90分以上的学生占总人数的10%,80分以上的学生占总人数的30%求(25分)
(1)正态分布的参数μ和σ的值;(10分)
(2)若该班级有50名学生,估计成绩在70分以上的学生人数(10分)
(3)若随机抽取一名学生,其成绩在60分至80分之间的概率是多少?(5分)【答案】
(1)由标准正态分布表查得,PZ
1.28=
0.1,PZ
0.52=
0.3,解得μ=75,σ=
8.5
(2)70分以上约占总人数的20%,即
500.2=10人
(3)P60X80=P-
1.47Z
0.52=
0.6443。
个人认证
优秀文档
获得点赞 0