还剩7页未读,继续阅读
文本内容:
南京六校联考真题答案大公开
一、单选题
1.下列图形中,不是中心对称图形的是()(1分)A.等腰三角形B.正方形C.矩形D.圆【答案】A【解析】等腰三角形不是中心对称图形
2.若集合A={1,2,3},B={2,3,4},则A∩B等于()(1分)A.{1,2}B.{2,3}C.{3,4}D.{1,4}【答案】B【解析】A和B的交集是它们共有的元素,即{2,3}
3.函数fx=lnx+1的定义域是()(1分)A.-∞,-1B.-1,+∞C.-∞,+∞D.[-1,+∞【答案】B【解析】ln函数的定义域要求括号内大于0,即x+10,解得x-
14.已知向量a=3,4,b=1,2,则向量a+b等于()(1分)A.4,6B.3,6C.4,5D.3,5【答案】A【解析】向量相加是对应分量相加,即3+1,4+2=4,
65.方程x^2-5x+6=0的解是()(1分)A.x=2B.x=3C.x=-2D.x=-3【答案】B【解析】因式分解得x-2x-3=0,解得x=2或x=
36.在直角三角形中,若一个锐角为30°,则斜边上的高与斜边的比是()(1分)A.1:2B.1:√3C.1:√2D.1:1【答案】A【解析】30°角的对边是斜边的一半,高将斜边分为两个30°-60°-90°三角形,高是斜边的一半
7.已知直线l的斜率为2,且过点1,1,则直线l的方程是()(2分)A.y=2xB.y=2x-1C.y=2x+1D.x=2y【答案】C【解析】使用点斜式方程y-y1=kx-x1,代入点1,1和斜率2,得y-1=2x-1,化简得y=2x-
18.函数y=sinx的周期是()(1分)A.πB.2πC.π/2D.4π【答案】B【解析】sin函数的周期是2π
9.若fx=2x+1,则ff1等于()(1分)A.4B.5C.6D.7【答案】C【解析】先计算f1=21+1=3,再计算f3=23+1=
610.在等差数列中,若a1=3,d=2,则第5项是()(1分)A.7B.9C.11D.13【答案】D【解析】等差数列的第n项公式是an=a1+n-1d,代入得a5=3+5-12=13
二、多选题(每题4分,共20分)
1.以下哪些属于新闻素材的来源?()A.采访录音B.视频资料C.官方文件D.个人观点E.实地观察【答案】A、B、C、E【解析】新闻素材来源包括采访录音、视频资料、官方文件和实地观察,个人观点不属于直接素材考查素材分类
2.以下哪些是三角形的面积计算公式?()A.S=1/2ab·sinCB.S=ahC.S=1/2a+b+c·rD.S=a^2·tanBE.S=1/4·√4a^2+4b^2-c^2【答案】A、B、E【解析】三角形面积公式包括底乘高的一半、两边乘夹角正弦的一半、海伦公式和勾股定理变形,选项C是圆的面积公式
3.以下哪些是函数y=x^2的图象性质?()A.图象关于y轴对称B.图象开口向上C.顶点是原点D.函数在-∞,0单调递减E.函数在0,+∞单调递增【答案】A、B、C、E【解析】y=x^2是抛物线,关于y轴对称,开口向上,顶点在原点,在0,+∞单调递增,在-∞,0单调递减
4.以下哪些是向量平行(共线)的条件?()A.a=1,2,b=2,4B.|a|=|b|C.a·b=0D.a/b=k(k为常数)E.向量a与向量b的夹角为0°或180°【答案】A、D、E【解析】向量平行条件是存在常数k使得一个向量是另一个向量的k倍,或它们的夹角为0°或180°选项A中b=2a,选项D是定义,选项E是夹角条件
5.以下哪些是等比数列的性质?()A.任意两项之比相等B.通项公式为an=a1·q^n-1C.相邻两项之积等于下一项D.前n项和公式为Sn=a11-q^n/1-q(q≠1)E.若公比q1,则数列单调递增【答案】A、B、C、D【解析】等比数列的性质包括任意两项之比相等、通项公式、相邻两项乘积等于下一项、前n项和公式单调性取决于公比q的正负
三、填空题
1.港口应急演练应制定______、______和______三个阶段计划【答案】准备;实施;评估(4分)
2.函数y=√x-1的定义域是______【答案】[1,+∞(2分)
3.在等比数列中,若a2=6,a4=54,则公比q=______【答案】3(2分)
4.已知直线l1:2x+y-1=0与直线l2:x-2y+3=0相交,则交点坐标是______【答案】1,-1(4分)
5.若向量a=3,-1,向量b=1,2,则向量a·b=______【答案】1(2分)
6.函数y=2cos3x+π/4的周期是______【答案】2π/3(2分)
7.在直角三角形中,若两条直角边长分别为3和4,则斜边长是______【答案】5(2分)
8.抛物线y^2=8x的焦点坐标是______【答案】2,0(4分)
四、判断题
1.两个负数相加,和一定比其中一个数大()(2分)【答案】(×)【解析】如-5+-3=-8,和比两个数都小
2.所有的偶数都是合数()(2分)【答案】(×)【解析】2是偶数但不是合数
3.若A⊆B,则A∪B=B()(2分)【答案】(√)【解析】集合A的所有元素都在集合B中,并集就是B本身
4.对任意实数x,都有cos^2x+sin^2x=1()(2分)【答案】(√)【解析】这是三角恒等式
5.若fx是奇函数,则f0=0()(2分)【答案】(×)【解析】f0可以不为0,如fx=x^3,f0=0;但如fx=x^3+1,f0=1,也是奇函数
五、简答题
1.已知函数fx=x^2-4x+3,求fx的顶点坐标和对称轴方程(4分)【答案】顶点坐标2,-1,对称轴方程x=2【解析】将fx写成顶点式fx=x-2^2-1,顶点坐标为2,-1,对称轴是x=
22.求不定积分∫2x+1/xdx(5分)【答案】2x+ln|x|+C【解析】分解被积函数∫2dx+∫1/xdx=2x+ln|x|+C
3.在△ABC中,已知角A=60°,角B=45°,边a=√3,求边b的长度(5分)【答案】b=√6【解析】使用正弦定理a/sinA=b/sinB,代入得√3/sin60°=b/sin45°,解得b=√6
六、分析题
1.已知数列{an}是等差数列,a1=2,a5=10,求通项公式an,并求前10项的和(10分)【答案】an=2+n-1·4=4n-2,S10=102+4·10-2/2=210【解析】等差数列通项公式an=a1+n-1d,代入a1=2,a5=10,得d=8/4=2,所以an=2+n-1·2=4n-2前10项和S10=10a1+an/2=102+38/2=
2102.在平面直角坐标系中,求过点1,2且与直线l:3x-4y+5=0平行的直线方程(15分)【答案】3x-4y+5=0【解析】平行直线斜率相同,原直线斜率为3/4,新直线方程形如3x-4y+k=0,代入点1,2得3-8+k=0,解得k=5,所以方程为3x-4y+5=0
七、综合应用题
1.某工厂生产一种产品,固定成本为10000元,每件产品的可变成本为50元,售价为80元若市场需求量与价格的关系近似为线性函数p=120-
0.1q(p为价格,q为需求量),求该工厂生产多少件产品时能获得最大利润?最大利润是多少?(25分)【答案】生产700件产品时利润最大,最大利润为19000元【解析】利润函数L=pq-固定成本+可变成本q=q120-
0.1q-10000+50q=-
0.1q^2+70q-10000这是开口向下的抛物线,顶点q=-b/2a=-70/2×-
0.1=350,但实际需求量需考虑售价,当p=80时q=400,所以实际最大需求量是700件代入q=700得L=-
0.1700^2+70700-10000=19000元
2.已知函数fx=x^3-3x^2+2x,求fx的单调区间和极值(20分)【答案】单调增区间0,2,单调减区间-∞,0和2,+∞,极大值f1=0,极小值f2=-4【解析】求导fx=3x^2-6x+2,解fx=0得x=1±√3/3当x1-√3/3或x1+√3/3时fx0,函数单调增;当1-√3/3x1+√3/3时fx0,函数单调减计算f1=0,f2=-4,f-1=-4,所以极大值是f1=0,极小值是f2=-4
八、标准答案
一、单选题
1.A
2.B
3.B
4.A
5.B
6.A
7.C
8.B
9.C
10.D
二、多选题
1.A、B、C、E
2.A、B、E
3.A、B、C、E
4.A、D、E
5.A、B、C、D
三、填空题
1.准备;实施;评估
2.[1,+∞
3.
34.1,-
15.
16.2π/
37.
58.2,0
四、判断题
1.×
2.×
3.√
4.√
5.×
五、简答题
1.顶点坐标2,-1,对称轴方程x=
22.2x+ln|x|+C
3.b=√6
六、分析题
1.an=4n-2,S10=
2102.3x-4y+5=0
七、综合应用题
1.生产700件产品时利润最大,最大利润为19000元
2.单调增区间0,2,单调减区间-∞,0和2,+∞,极大值f1=0,极小值f2=-4。
个人认证
优秀文档
获得点赞 0